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Chapter 12

Genomic Instability and 
Shared Mechanisms for Gene 
Diversification in Two Distant 
Immune Gene Families: The 
Plant NBS-LRR Genes and the 
Echinoid 185/333 Genes

Matan Oren, Megan A. Barela Hudgell, Preethi Golconda,  
Cheng Man Lun, L. Courtney Smith

1  INTRODUCTION

One of the major challenges faced by immune systems is to generate a protein 
repertoire that is broad and competent enough to recognize the ever-diversifying 
array of pathogenic nonself. Eukaryotes have numerous strategies to achieve 
this. Innate immune systems consist of large families of pattern recognition 
receptors (PRRs) that identify different pathogen associated molecular pat-
terns (PAMPs) with high specificity. Examples include (1) Toll-like receptors 
(TLRs)1 found in most animals from Porifera to humans, with PAMP recogni-
tion function demonstrated in some species, including human, mouse, and fruit 
fly2; (2) fibrinogen-related proteins (FREPs) with antiparasite activities in mol-
lusks3; (3) Down syndrome cell adhesion molecule (Dscam) in insects4,5 and 
crustaceans6,7 with opsonin function; and (4) variable domain-containing chitin 
binding proteins (VCBPs) in protochordates8,9 that respond to gut microbes. 
The adaptive immune system in jawed vertebrates uses somatic recombination 
of gene segments to create enormous diversity of T cell and B cell receptors.10 
Alternatively, the adaptive immune system in the jawless vertebrates relies on 
a copy-choice mechanism to assemble sections of leucine-rich repeat (LRR) 
cassettes into a germline gene to create similar diversity of variable lymphocyte 
receptors.11–13 On the other hand, innate immune systems have been suggested 
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to lack the flexibility of adaptive immunity to identify and respond to novel 
PAMPs that have either newly appeared, or have been newly introduced into a 
population, due to either environmental changes or as a result of the arms race 
with host immunity. Therefore, it is necessary for innate immune systems in 
eukaryotes to employ other types of swift genomic diversification mechanisms 
either within the lifespan of the host or between generations, to stay even in the 
arms race with the pathogens. Here, we discuss different aspects of genome 
diversification in two very distinct innate immune gene-families: the nucleotide 
binding site leucine rich repeat (NBS-LRR) genes in plants, and the 185/333 
genes in echinoids. The first is abundant in many species of plants, is a subset of 
the resistance (R) genes, and appeared early in the plant lineage more than 500 
million years ago14 whereas the second is restricted to the echinoid lineage of 
echinoderms, and the extant genes are estimated to be only 2.7–10 million years 
old.15,16 Although there are many differences between these two gene families, 
there are some striking similarities in the genomic structure and the gene diver-
sity among and within species, which will be the focus of this review.

2  THE NBS-LRR GENE FAMILY IN HIGHER PLANTS

The immune response in plants consists of two arms: PAMP-triggered im-
munity (PTI) and effector-triggered immunity (ETI).17,18 PTI relies on cell-
surface-membrane mounted PRRs that extend into the apoplast and recognize 
and respond to microbial molecules. ETI functions most often in the plant cell 
cytoplasm, either acting directly by detecting pathogen virulence-factors called 
effectors, or acting indirectly by monitoring host proteins that have been al-
tered by effector activity.17,19 The guard hypothesis suggests that the indirect 
detection of effector activity is facilitated through a cytoplasmic complex of 
an R protein that functions as a guard for a host guardee protein. In normal 
conditions the guard/guardee complex is stable, but upon injection of effec-
tors into the plant cell by a pathogen, the effectors alter the guardee, which is 
detected by the R protein guard, and induces a signaling pathway to activate the 
ETI response.17,20 The indirect ETI response to changes in the guardee proteins 
maximizes the capacity of the plant host to detect the activity of a large variety 
of pathogens with a much smaller number of R proteins.18,21 The key players 
in the ETI response are a diverse group of mostly intracellular R proteins17,22 
that are encoded by a few to hundreds of R genes that are present typically in 
clusters in every plant genome (Fig.  12.1A), with an expanded repertoire in 
flowering plants.14,22 Most R proteins, although not all, are characterized by the 
presence of a nucleotide binding site (NBS) domain, a linker region, and a vari-
able number of LRRs (Fig.12.1B, C).23 There are 151 NBS-LRR proteins in the 
mouse-ear or thale cress, Arabidopsis thaliana, 458 in rice, 459 in wine grape, 
but only two in the much more primitive plant, the spike moss (reviewed in Ref. 
[14]). The NBS-LRR type of R proteins are divided into two major structur-
ally distinct sub-groups, defined by the N-terminal domain, which is either a 
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Toll/interleukin-1 receptor (TIR) domain in the TIR-NBS-LRR (TNL) type, 
or a coiled-coil (CC) domain in the CC-NBS-LRR (CNL) type (Fig. 12.1B, C) 
(reviewed in21). Binding of the LRRs of the TNL and CNL proteins to effector 
molecules, or to altered guardee proteins, triggers different downstream signal-
ing cascades that lead to the hypersensitivity response (HR) in plants. HR is a 
rapid apoptotic reaction in infected cells, and those nearby, which functions 
to remove the availability of cytoplasmic nutrients to pathogens, and thereby 
restricts their growth and spread.24

FIGURE 12.1  An R gene cluster and the structures of the TNL and CNL genes and proteins. 
(A) A representative homologous R gene cluster (not to scale). R genes are most often clustered 
within plant genomes, commonly in homologous clusters, with genes of similar structure and se-
quence. Each gray polygon represents an individual gene (introns and exons are not shown), and 
gene orientation is indicated by the pointed end of each polygon. Intergenic regions are represented 
by the black line and are not to scale. Gene clusters can vary in size and have different numbers of 
genes. The majority of genes range in size from 2 to 15 kb, with a maximum size of 44 kb.25 (B) 
Representative structures of a Toll/interleukin-1 receptor domain (TIR)-NBS-LRR (TNL) gene and 
a coiled-coil domain (CC)-NBS-LRR (CNL) gene (not to scale). The structures of R genes are highly 
diverse, with an N-terminal domain (light gray, dashed outline) in some genes, a TIR domain in 
TNLs, or a CC domain in CNLs. The NBS domain has five key semi-conserved regions, including a 
P-loop, a Kinase 2 motif, and a Resistance Nucleotide Binding Site B (RNBS-B) motif,26 plus two 
semi-conserved amino-acid motifs, GLPL and MHDV. Between the NBS domain and the LRRs is 
an NL linker (named for its location between the NBS and LRR regions). The LRRs can be encoded 
by either a single or by multiple exons, depending on the gene. The C-terminal domain is of vari-
able lengths among genes, the first portion being encoded within the last LRR exon, and additional 
C-terminal regions can be encoded on multiple following exons (blue, dashed outline). Dotted hori-
zontal lines represent introns that are present in some genes and absent in others. (C) Representative 
structure of TNL and CNL proteins. The domains that are present in both types of R proteins include 
the NBS, the NL linker, and the LRRs. The N-terminus is either a TIR or a CC, which defines the 
TNL or CNL type of R protein, respectively. (Source: Part B modified from Refs. [27,28].)
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3  THE 185/333 GENE FAMILY IN ECHINOIDS

The 185/333 gene family encodes a diversified repertoire of immune-response 
proteins in sea urchins. To date, the 185/333 gene families have only been iden-
tified in two species of sea urchins, Strongylocentrotus purpuratus (the Cali-
fornia purple sea urchin)15,16 and Heliocidaris erythrogramma (the Australian 
purple sea urchin).29 However, these genes are likely present in most echinoids, 
as they have been identified in the genome sequences of Strongylocentrotus 
franciscanus and Allocentrotus fragilis16 and Lytechinus pictus (K. Buckley, 
University of Toronto, personal communication). Among those, the most stud-
ied is the Sp185/333 gene family in the California purple sea urchin, S. purpu-
ratus, which was first identified because it showed significant up-regulation in 
response to immune challenge with heat-killed bacteria and PAMPs, includ-
ing lipopolysaccharides (LPS), peptidoglycans (PGN), and β-1,3-glucan.30–33 
The family consists of up to 60 members; however, the gene number may vary 
among individuals16 and among different species (K. Buckley, personal com-
munication). The Sp185/333 genes range in size from 1.2 to 2  kb and have 
only two exons separated by a small intron (380–413 nucleotides).32,34 The first 
exon (51–54 nucleotides) encodes the hydrophobic leader, whereas the second 
encodes the mature protein that shows significant sequence diversity. Optimal 
alignments of genes and transcripts require the insertion of artificial gaps, which  
define the presence and absence of short blocks of sequence, known as ele-
ments (Fig. 12.2A). The combinations of different elements result in recogniz-
able mosaics of elements, called element patterns.31,32,34 This gene structure is 
persistent among sea urchin species studied to date, although the elements in  
185/333 genes from different sea urchin species are not the same.15,29 The pre-
dicted structure of the Sp185/333 proteins is a signal peptide at the N-terminus, 
a glycine-rich region with an arginine–glycine–aspartic acid (RGD) motif (sug-
gestive of integrin binding), a histidine-rich region, and a C-terminal region 
(Fig. 12.2B). No secondary structure can be predicted based on the amino-acid 
sequence for any of the proteins deduced from the cDNA or gene sequenc-
es.31–33,35 The 185/333 genes are expressed in specific subpopulations of sea ur-
chin coelomocytes, and the encoded proteins appear to be localized internally in 
perinuclear vesicles in some phagocytes, and on the cell surface of small phago-
cytes.29,36–38 In S. purpuratus, single phagocytes from immune-challenged sea 
urchins express a single Sp185/333 message, inferring complex regulation of 
gene expression from the family and the production of a single Sp185/333 pro-
tein per cell.38 It should be noted that although a genome sequence exists for an 
individual California purple sea urchin, the Sp185/333 gene family is artificially 
underrepresented within this genome, likely due to computational assembly-
contraction problems resulting from the variety of repeat sequences that are 
present between and within the genes (Fig. 12.2A). The size and organization 
of the Sp185/333 gene family is currently known, based on gene and message 
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FIGURE 12.2  Sp185/333 gene cluster, repeat-based alignment, element patterns and protein structure. (A) Repeat-based alignment of the Sp185/333 genes 
shown in (C). The alignment optimizes correspondence between repeats and elements whenever possible.34 Optimal alignments require artificial gaps (horizontal 
black lines) that delineate individual elements shown as different-colored rectangles. The consensus of all possible elements are numbered across the top of the align-
ment. Each gene is composed of two exons; the first encodes the leader (L) and the second encodes the mature protein. Almost all genes have a single intron (int) of 
∼400 nt (not to scale). The mosaic combinations of presence or absence of different elements in the second exon defines the element pattern (E2, B8, D1, and A2). 
Elements that correlate with each of the six types of repeats are shown in different-colored rectangles at the bottom (type 1, red; type 2, blue; type 3, yellow; type 4, 
green; type 5, pink; type 6, dark gray); the brackets under the type 2 to type 6 repeats indicate the two duplicated regions. (B) The deduced Sp185/333 protein struc-
ture. The protein size and regions of the protein are correlated with the gene structure in (A). (C) Six Sp185/333 genes in a BAC insert (GenBank accession number 
BK007096) are closely linked. Genes are indicated by element pattern and color; A2 (red), B8 (orange), three D1 (yellow, green, blue), and E2 (purple). The genes 
are located near the 3’ end of the BAC insert within 34 kB. Gene orientations are indicated and spacing is relative to the scale. GA microsatellites flank each gene 
and GAT microsatellites flank segmental duplications within which are positioned three D1 genes. (Sources: Part A modified from [34]; part B modified from [39].)
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sequences, and on the assembled insert for one BAC clone (GenBank accession 
number BK007096), which contains six tightly clustered genes (Fig. 12.2C).39

4  GENE DIVERSIFICATION

There is ample evidence for rapid evolution in the NBS-LRR gene family in 
higher plants14,40,41 and in the 185/333 gene family in sea urchins.29,42 One has 
only to evaluate the variability of both the gene numbers among and within spe-
cies, and the sequence diversity of the genes, to obtain a general understanding 
of the pace of diversification. The NBS-LRR gene family is one of the largest 
and most variable gene families in plants.14 Although the common ancestor for 
the plant NBS-LRR genes is predicted to be much older than the common an-
cestor of the Sp185/333 genes, the NBS-LRR family has continued to expand 
and diversify.14 Many of its members exhibit allelic polymorphism,18 and for 
some NBS-LRR loci, polymorphism within populations is as great as that char-
acterized for the major histocompatibility complex in vertebrates.40 The NBS-
LRR genes show two general types of models for gene evolution: the majority 
are type I genes that show diversifying selection with a rapid rate of evolution 
and high sequence exchange among genes, and the rest are type II genes that 
show a slower rate of diversification correlating with less frequent exchang-
es.20,22,27,40,43 These two models of gene evolution are not mutually exclusive, 
and NBS-LRR genes positioned within the same cluster can show signatures of 
both diversification rates.27 It is noteworthy that the TNL class tends to show 
significantly higher evolution rates than the non-TNL genes, including the CNL 
class.40 Within the TNL genes, sequences that encode the solvent-exposed re-
gions of the LRRs (Fig. 12.1B) seem to be under the highest positive selection 
and show the highest levels of genetic diversification.21 These regions show el-
evated ratios of the nonsynonymous versus synonymous substitutions (dN/dS). 
This is likely driven by the shared sequences among the LRRs, together with se-
lection based on the function of the LRRs in pathogen-associated recognition.43 
In contrast, the region encoding the NBS domain undergoes purifying selection 
and is highly conserved, which is likely based on its functions in nucleotide 
binding, which is crucial for R protein function to initiate signaling in order to 
activate the protective HR.21,23,44

Similar to the NBS-LRR gene family, the 185/333 genes show exceptional 
diversity both among animals and among sea urchin species.15,16,29,31,34,45 An 
unrooted phylogenetic tree of 185/333 sequences from H. erythrogramma and 
S. purpuratus shows a complete separation of sequences from the two species 
into different clades.29 The recognizable element patterns in the second exon 
of the Sp185/333 genes are composed of a mosaic of 25–27 different possible 
elements (depending on the alignment) that range in size from 12 to 258 nu-
cleotides (Fig. 12.2A) and generate 51 different patterns that have been identi-
fied to date.31,33,34 Similarly, the He185/333 genes have 26 elements and 31 
element patterns, based on the first report on this gene family.29 The element 
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patterns of the different Sp185/333 genes impart high sequence diversity, but 
paradoxically, because they share element sequences, they are up to 88% iden-
tical.16,34 Furthermore, although element sequences are shared among genes, 
identical sequences of full-length genes are not shared among individual sea 
urchins. This is because (1) only subsets of elements are shared among genes 
and among animals, (2) there is sequence diversity within different versions of 
the same element, and (3) there are sequence variations among intron from dif-
ferent genes. The 185/333 genes from both species show many nonsynonymous 
substitutions with respect to synonymous substitutions (dN/dS ratio) for some 
element sequences, indicating diversifying selection for these regions, whereas 
for other elements, a low dN/dS ratio, suggesting purifying selection, has been 
noted.29,32,34 Furthermore, when Sp185/333 gene sequences are compared, the 
level of diversity among the elements shows significant differences.34 In gen-
eral, the 185/333 and the NBS-LRR gene families portray sequence diversity 
patterns with exceptionally fast diversification rates and high dN/dS ratios for 
some regions within the genes, and slow diversification rates and low dN/dS ra-
tios for other regions. For both families, a conserved basic structure of the genes 
that encode the functional regions of the proteins is maintained.

5  CLUSTERING AND TANDEM REPEATS

The NBS-LRR genes are unevenly distributed in the genome, and tend to be 
present in clusters that vary in size from 2 to 23 genes, with possibly more in 
single clusters (Fig. 12.1A).14,28,43,46–51 For example, the rice Xa21 gene cluster 
has seven paralogs within 230 kb,52 the tomato I2 cluster has seven paralogs 
within 90 kb,53 and the RPW8 cluster in Arabidopsis has five paralogs within 
13  kb.54 NBS-LRR clusters can be homogeneous, with all members showing 
similar structure of either TNL or CNL genes (Fig. 12.1B, C), or can be hetero-
geneous with TNL and CNL genes mixed together.55 Homogeneous NBS-LRR 
clusters that contain tandemly repeated genes are very common in many plant 
genomes. For example, ∼40 homogeneous clusters are present in the Arabi-
dopsis genome, compared to ∼10 clusters that are heterogeneous.49 There is 
evidence that the clustering of NBS-LRR genes is a major factor in the sequence 
diversification among the members of the family. The cluster size and gene 
copy number is positively correlated with sequence-exchange frequency among 
members of the cluster.40,41,51 Furthermore, there are greater dN/dS ratios for 
paralogs in clusters compared to isolated paralogs.51

The published Sp185/333 cluster consists of six closely linked Sp185/333 
genes within 34 kb. Five of the genes are tightly clustered within 20 kb and are 
3.2 kb apart, whereas a peripheral sixth gene is located at a distance of 14 kb 
(Fig. 12.2C).39 The peripheral genes are oriented in the same direction, where-
as the four internal genes are oriented in the opposite direction. The cluster is 
composed of a mixture of homogeneous and heterogeneous genes based on the 
element patterns of the second exon (Fig. 12.2A). The three central genes all 
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have a D1 element pattern, and are positioned within three tandem segmental 
duplications of ∼4.5 kb that show 99.7% sequence identity and are flanked by 
GAT microsatellites (Fig. 12.2C).39 The near- identity among the D1 genes and 
their flanking regions suggest very recent duplication events.16,39

Both the R and 185/333 gene families contain several types of repeats. The 
NBS-LRR genes contain exons that encode LRRs of 20–29 amino acids with a 
consensus sequence of LxxLxLxxNxL(T/S)GxIPxxLGxLxx, in which “L” is 
Leu, Ile, Val, or Phe, T/S is Thre or Ser, and “x” is any amino acid.56–58 The 
number of LRRs can vary among NBS-LRR genes, ranging from 4 to 50 re-
peats.27 For example, in Arabidopsis, the number of LRRs ranges from 8 to 2528 
and the Resistance Gene Candidate 2 (RGC2) genes in lettuce have 40 to 48 
LRRs.27 Although the LRRs have an established function for interaction with 
PAMPs or pathogen elicitors (reviewed in17,59), they also serve as an important 
component in creating genomic instability due to their repetitive nature, which 
leads to gene-family diversification. Evidence for the participation of LRRs in 
gene diversification processes lies within the differences in the LRRs among 
quickly diversifying type I R genes, compared to more slowly diversifying type 
II genes. The sequence identity of introns within type I genes vary between the 
5’ region and the 3’ region of the gene (Fig. 12.1B). Introns within the LRR 
region have high sequence-identity when compared to each other, which may 
reflect higher rates of sequence exchanges within the LRR region. Introns with-
in slowly evolving type II genes have low sequence identity, reflecting their 
lower rates of sequence-exchange events. TNLs have additional introns within 
the LRR coding regions that are absent from most known CNLs (Fig. 12.1B), 
which may be indicative of differences in the evolutionary history of the two 
gene types.27,28 The greater number of introns within TNL genes versus CNL 
genes may indicate that TNL genes originated from a fusion of independent 
genes and are younger than CNL genes, which have few to no introns.48 It is 
noteworthy that, although the CNL genes have lost their modular gene structure 
over time, the encoded proteins may maintain modular functions.

The repeats within the second exon of the Sp185/333 genes allow two dif-
ferent alignments that are equally optimal.34 The initial alignment is based on 
the cDNA sequences, and did not take into account the positions of the internal 
repeats.32,33 The second alignment is repeat-based that optimized the correspon-
dence of elements and repeats.34 There are six types of imperfect repeats in 
the second exon that are both tandem and interspersed (Fig. 12.2A).31,32,34,39 
Depending on the gene, there are two to four type-1 repeats at the 5’ end of 
the exon, plus multiple copies of type 2–6 repeats that are present in two du-
plications of the interspersed repeats, in addition to an extra type-3 repeat 
(Fig. 12.2A). In addition, there are GA microsatellites positioned on either side 
of each gene within the intergenic regions, and are located about 430 bp from 
the 5’ end of each gene, and 300–700 bp from the 3’ end (Fig. 12.2C).39 The 
GAT microsatellites are positioned at the edges of three ∼4.5 kb tandem seg-
mental duplications that include three D1 genes (Fig. 12.2C). Based on their 
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positions at the edges of the duplicated regions, they may act as mediators of 
the duplication process.39 Moreover, pairwise sequence comparisons among the 
clustered genes identified in the BAC insert show that the sequences between the 
ends of the coding regions and the nearby flanking GA microsatellite are much 
more conserved than the regions outside of the GA repeats.39 This suggests 
that the microsatellites surrounding the Sp185/333 genes and those surrounding 
the segmental duplications may promote diversification of the family through 
regional instability, including sequence duplication and limiting sequence ho-
mogenization from gene conversion.16 Taken together, both the 185/333 and R 
gene families are characterized by clustering, repeats, and duplications. These 
features are found abundantly within the genomic structure for each of these 
innate immune gene-families, and are likely crucial for the processes that lead 
to gene diversification.

6  SPECULATIONS ON DIVERSIFICATION MECHANISMS  
OF THE Sp185/333 GENES

The regions of the genome in which the NBS-LRR and the Sp185/333 gene 
families are located, are very likely prone to genomic instability, which leads 
to gene sequence diversification. Gene diversification is initiated by mecha-
nisms that regulate changes in the gene-copy number and organization of the 
whole family in which entire genes are duplicated, transferred to another loca-
tion, deleted, or incur changes within the gene sequences (Fig. 12.3). The arms 
race between host and pathogen drives changes in host immune gene-sequence, 
which in turn drives functional adaptations in genes encoding effector proteins 
in pathogens, as demonstrated for the regions of the plant R genes that encode 
the LRRs. The variety of repetitive sequences in the NBS-LRR and Sp185/333 
gene families promote genomic instability and nucleotide mismatches that may 
take place when homologous chromosomes interact either during meiosis or 
DNA repair processes. Meiotic recombination and homologous DNA repair 
may be regarded as special events in which homologous chromosomes inter-
act and promote sequence exchange. Several mechanisms that directly and 
indirectly lead to gene sequence rearrangements have been suggested for the 
NBS-LRR gene family. Based on the structural and diversification similarities 
of these two immune gene families, we speculate that these mechanisms apply 
to the Sp185/333 genes as well. NBS-LRR genes are diversified by recombina-
tion between alleles and similar family members that result in new R genes 
with altered sequences. This spontaneous allele recombination is combined  
with selective pressures to detect PAMPs or elicitors, and results in gene vari-
ants with altered binding specificity. For example, individual L genes in flax 
that are derived from intragenic crossing-over show distinct phenotypes with 
regard to pathogen recognition.60 Recombination in the Sp185/333 genes has 
been detected computationally and is evident, not only between, but within ele-
ments and within the intron,42 suggesting that recombination events can occur at 



FIGURE 12.3  Genomic modifications that potentially lead to changes in the size of gene 
families, changes in the organization of clusters, and alterations to gene sequences. Genes are 
represented as polygons (white and striped genes are in nonallelic clusters), with the pointed end 
indicating gene orientation. The genomic DNA in which the genes are located is shown as a solid or 
dashed horizontal line representing nonallelic regions. The generation of diversity within clusters 
and sequence diversity within genes is illustrated. (A) An unequal crossing-over in an intergenic 
region between nonallelic clusters can alter the sizes of the clusters, and result in heterogeneous 
clusters. (B) Unequal crossing-over within genes in nonallelic clusters can generate recombinant 
genes, alter cluster sizes, and result in heterogeneous clusters. (C) Gene conversion results when the 
sequences of one gene are copied into a nonallelic gene of similar sequence. (D) Inversion changes 
the orientation of a gene within a cluster, whereas the tandem duplication of genes or sets of genes 
increases the size of a cluster. (E) A duplicated gene can be inserted into an ectopic location, gener-
ating a heterogeneous cluster. (F) Meiotic mispairing occurs when chromatids misalign in regions of 
allelic clusters of highly similar genes, with the outcome of more genes in one cluster and fewer in 
the allelic cluster. The recombination event is shown between genes, but can occur within genes, as 
in (B). The processes shown in (A), (B), (E), and (F) can increase and decrease gene-copy numbers 
in clusters and in gene families.
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any point throughout the entire gene sequence and are not focused in hotspots. 
For example, there is no correlation between the patterns and numbers of the 
tandem type I repeats in the 5’ end of the second exon and the patterns of the 
interspersed repeats located towards the 3’ end of the exon (Fig. 12.1A). It has 
been suggested that highly similar sequences between duplicated genes within 
homologous clusters drive further diversification through processes such as un-
equal crossing-over (Fig.  12.3A, B),61 resulting in unequal numbers and mi-
spaired linked genes in the progeny, followed by processes that drive further 
diversification.55 In both families, shared sequences among paralogs leads to a 
swift rate of recombination among the genes.

Gene conversion occurs either during meiosis or as a result of DNA repair 
processes when homologous sites show mismatches in base pairing. These mis-
matches are recognized and corrected by the DNA repair machinery to con-
vert the sequence of one allele to the sequence of its homologous counterpart 
(Fig.  12.3C). Gene conversion is an important diversification mechanism in 
TNL genes that undergo rapid sequence diversification followed by pathogen-
driven selection for function (reviewed in22). The RGC2 type I genes in lettuce 
undergo rapid rates of gene conversion and recombination within the 3’ end 
that encodes the LRRs, which have resulted in a large variety of RGC2 genes.27 
Bioinformatic analysis of the Arabadopsis genome shows that gene-conversion 
events are driven by genes in clusters with sequence similarity.61 The Araba-
dopsis gene-conversion events take place most commonly between genes that 
share 60–70% sequence identity, with most conversion events spanning 60–
528 bp.27,61,62 A greater tendency for gene conversion occurs when genes are  
proximal to each other, and is rarely found in genes dispersed farther away in the 
genome. It is not known whether gene conversion is a key mechanism for diver-
sification in the 185/333 gene family. The structural components necessary for  
promoting gene conversion exist in the family, particularly given the significant 
sequence identity that is shared among the Sp185/333 genes, which is based on 
shared element sequences.34,39 Within a cluster, the presence of the microsatel-
lites may initiate gene conversion, and then may limit the size of converted 
regions to block homogenization of the entire cluster.39 Although it would be 
expected that higher sequence similarity would be present among tightly linked 
Sp185/333 genes based on the likelihood of conversion occurring among proxi-
mal genes, comparisons among 121 genes of unknown linkage relationships 
from three S. purpuratus genomes show the same level of sequence similarity 
as genes of known linkage.39 This lack of significant differences in the sequence 
diversity among clustered Sp185/333 genes and 121 unique unlinked genes sug-
gests that gene conversion may occur within the family among both local and 
more distant genes,16 and that it occurs relatively swiftly within the family.

Both gene conversion and unequal crossing-over can drive gene duplica-
tion.20 The most frequent duplication of whole NBS-LRR genes are tandem du-
plications, resulting in two similar genes in close proximity, which leads to the 
formation of a homogeneous gene cluster (Fig. 12.3D).14,49,61 Gene duplication 
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and ectopic insertion of either a small set of genes or single genes to a dis-
tant location on the same or on a different chromosome (Fig. 12.3E), may also 
contribute to the family sequence diversity, which includes the formation of 
heterogeneous clusters.28 Chromosomal segmental duplication can affect large 
portions of plant genomes, and is involved in the expansion of NBS-LRR gene 
families.28 Small segmental duplications in the Sp185/333 gene cluster appears 
to be the source of the D1 gene duplication.39 Furthermore, duplications of the 
tandem type 1 repeats in the Sp185/333 family (Fig.  12.2A) may have been 
derived from ancestral sequences through duplications of the repeats, in addi-
tion to recombination and deletions, based on a computational estimation of 
the evolutionary history of this region of the genes.42 Finally, similar to the 
NBS-LRR gene families, meiotic mispairing (Fig.  12.3F), based on the close 
proximity of the Sp185/333 genes within the cluster, in addition to the sequence 
similarities among the genes, has been speculated to drive changes in the size of 
the Sp185/333 gene family.16,39

Transposable elements may also contribute to genomic instability, which 
may drive diversity in both single genes and gene clusters. It has been shown 
that some NBS-LRR genes are associated with transposable elements. For ex-
ample, the rice Xa21 gene family contains a large number of transposable ele-
ments, including LTR-retrotransposons and miniature inverted repeat transpos-
able elements (MITEs).63 Fragments of transposable elements are also present 
within the Sp185/333 gene cluster. A portion of a Gypsy 10 long terminal repeat 
(LTR) S element is positioned near the 3’ end of the A2 gene in association with 
the flanking GA microsatellite.39 In addition, three tandem, incomplete Tc1-
N1-SP DNA transposon fragments are positioned at the 5’ end of the E2 gene in 
association with the GA microsatellite. It is not known whether transposable el-
ements contribute to the diversification of the NBS-LRR and the Sp185/333 gene 
families. However, we speculate that the transposable elements may contribute 
to the instability of the genomic regions harboring the gene families, through 
unequal crossing-over promoted by the duplication of transposable elements in 
the vicinity of members of the families.

Gene fragments and pseudogenes are commonly found in tightly linked 
clusters of paralogous genes, including 25% of the sea urchin SpTLR genes.64 It 
is thought that this is a result of duplication and recombination among similar 
genes that also promotes sequence diversification. The levels of NBS-LRR pseu-
dogenes vary from one species of plant to another, but are generally abundant.65 
In Arabadopisis, 8.05% of the NBS-LRR genes are pseudogenes,28 whereas 
51.3% of the NBS-LRR gene family in two rice subspecies are pseudogenes.65,66 
Contrary to the NBS-LRR family and the sea urchin SpTLR family, only one 
pseudogene of 171 sequenced genes has been identified in the Sp185/333 gene 
family.34 The pseudogene had no intron, and had a deletion in part of the coding 
region in the second exon that introduces a frame shift. Curiously for a gene 
family with significant levels of shared sequence within and surrounding the 
genes, no gene fragments have been found in the genome. The unexpectedly 
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low level of pseudogenes may be the result of rapid gene conversion (see previ-
ous sections) that may correct pseudogenes using sequences from nearby (and 
perhaps distant) genes, or alternatively by an unknown diversification regula-
tion mechanism.

7  CONCLUSIONS

The 185/333 and the NBS-LRR gene families share several structural features, 
including inter- and intra-genic sequence repeats, duplicated genes, clustering, 
gene conversion, and diversifying selection in response to pathogens. These 
features are well established in the NBS-LRR gene family as components that 
are necessary for the initiation of a variety of diversification mechanisms. We 
find that the use of a comparative approach, even between echinoderms and 
higher plants, can be useful in understanding the biology of immune gene fami-
lies, or for establishing hypotheses for how innate immune systems diversify 
and how potentially common mechanisms may function similarly in distantly 
related eukaryotes.
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