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The generation of large immune gene families is often driven by evolutionary pressure
exerted on host genomes by their pathogens, which has been described as the
immunological arms race. The SpTransformer (SpTrf) gene family from the California
purple sea urchin, Strongylocentrotus purpuratus, is upregulated upon immune challenge
and encodes the SpTrf proteins that interact with pathogens during an immune response.
Native SpTrf proteins bind both bacteria and yeast, and augment phagocytosis of a
marine Vibrio, while a recombinant SpTrf protein (rfSpTrf-E1) binds a subset of pathogens
and a range of pathogen associated molecular patterns. In the sequenced sea urchin
genome, there are four SpTrf gene clusters for a total of 17 genes. Here, we report an in-
depth analysis of these genes to understand the sequence complexities of this family, its
genomic structure, and to derive a putative evolutionary history for the formation of the
gene clusters. We report a detailed characterization of gene structure including the intron
type and UTRs with conserved transcriptional start sites, the start codon and multiple stop
codons, and locations of polyadenylation signals. Phylogenetic and percent mismatch
analyses of the genes and the intergenic regions allowed us to predict the last common
ancestral SpTrf gene and a theoretical evolutionary history of the gene family. The
appearance of the gene clusters from the theoretical ancestral gene may have been
driven by multiple duplication and deletion events of regions containing SpTrf genes.
Duplications and ectopic insertion events, indels, and point mutations in the exons likely
resulted in the extant genes and family structure. This theoretical evolutionary history is
consistent with the involvement of these genes in the arms race in responses to
pathogens and suggests that the diversification of these genes and their encoded
proteins have been selected for based on the survival benefits of pathogen binding and
host protection.

Keywords: sea urchin, invertebrate immunity, Strongylocentrotus purpuratus, gene family evolution, large
gene families
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INTRODUCTION

Large, expanded immune gene families in echinoids were first
identified in the genome sequence of the purple sea urchin,
Strongylocentrotus purpuratus (1, 2). They include the Toll-like
receptor (TLR) gene family that is composed of 253 members (3),
the nucleotide oligomerization domain (NOD) and the NACHT
leucine-rich repeat and PYD containing (NALP) gene families (1,
2), the cysteine rich scavenger receptor gene family (1, 4, 5), the
IL-17 cytokine genes (6), and the SpTransformer (SpTrf) genes of
which 15 have been reported previously but whose copy number
is likely to vary among individual sea urchins (7, 8). Most of the
expanded gene families in the S. purpuratus genome encode, or
are predicted to encode, proteins with immune function based on
i) homologous genes in other species (9), ii) upregulation upon
immune challenge (6, 10-13), or iii) patterns of expression and
expected markers of gene sequence evolution (see below). The
SpTrf gene family is upregulated swiftly upon immune challenge
in sea urchin immune cells, called coelomocytes (10-13),
although expression is restricted to the phagocyte subclass of
coelomocytes in adults (13, 14) and the blastocoelar cells in
larvae (15). As genes that encode proteins with immune
function, native SpTrf proteins opsonize bacteria and augment
phagocytosis (16), and one recombinant protein, rSpTrf-El,
binds to Gram negative bacteria, yeast, and several PAMPs (17,
18). The SpTrf genes consist of two exons with exon 2 composed
25-27 blocks of sequence called elements, which are present
in a mosaic pattern and whose mosaicism makes up the 51
known element patterns (12, 19) that result in a wide range of
sequences in exon 2 (12). The SpTrf genes also display allelic
polymorphism (7) that increases the diversity of the family in
individual animals and in the population (20). Allelic
polymorphisms impart important diversity in small immune
gene families such as those associated with allorecognition
including the major histocompatibility complex (MHC) locus
in higher vertebrates (21) and the fusion/histocompatibility
(Fu/HC) locus in tunicates [reviewed in (22)]. Allelic
polymorphism is also observed in large gene families such as
the disease resistance (R) genes in plants (23). Differences
between alleles at specific loci contribute to variation in the
immune genes that improves fitness of the host to block and/or
survive pathogen infection.

Large gene families can be generated through several
processes of genome diversification [reviewed in (24)] that
include duplications of large genomic regions, single or tandem
duplications that can include coding regions, duplications that
result in ectopic insertions as have been reported for R genes in
plants [reviewed in (25-27)], inversions, meiotic mispairing of
clustered genes with similar sequence, unequal crossing over of
both intergenic and intragenic regions, and gene conversion in
which a sequence from one gene is copied into a nonallelic gene
of similar sequence (28). These processes that produce large gene
families are the outcome of, and are promoted by, genomic
instability (9). These traits are observable in genes under
pathogen pressure based on the hypothesis that they are
beneficial for maintaining the diversity in immune gene
families to optimize fitness in response to pressure from

pathogen interactions. In keeping with genomic instability,
each SpTrf gene is flanked by GA short tandem repeats (STRs)
that often includes GAT STRs plus long streatches of GA STR
islands that flank two of the clusters (7). Furthermore, there are
six different types of imperfect repeats in exon 2, which make up
the mosaic pattern within the coding region of these genes and
was the basis of the repeat-based alignement (see below) (29).
While repeats are common in the sea urchin genome, the
placement of the STRs around the genes in this gene family is
unique and have been proposed to promote SpTrf gene
duplication or deletion (7, 30). STRs are known to be highly
unstable based on mutation rates that are up to 10 times greater
than non-STR genomic DNA, which leads to genomic instability
(31-34) and is likely a factor of strand-slipage, unequal crossing
over, and/or conversion (35, 36).

The process of maintaining duplicated and altered immune
genes is thought to be a response to pathogen pressure followed
by selection for improved host fitness. However, the pathogen
also responds with counter measures selected to avoid or defeat
these new or modified host immune genes and that provide the
benefits of successful infection and survival [reviewed in (37,
38)]. Both the host and the pathogen exert fitness pressure in a
co-evolutionary arms race, which is known as the Red Queen
hypothesis (39). Like the race between Alice and the Red Queen
in Luis Carroll’s Through the Looking Glass (40) where the two
run a long and hard race only to stay in the same place, infers
that a host can survive pathogen pressure only by rapidly
changing genes that influence susceptibility or resistance to
pathogen infection [(41), reviewed in (42)]. The pressure
imposed on the host and the pathogen often leads to genomic
regions with large expansive gene families (9, 20, 23, 24).
Characteristics of genes involved in an arms race typically
show signatures of positive selection, gene multiplicity, elevated
recombination rates, and sequence variation that appear as
elevated polymorphism and increased species level diversity
(37, 38, 43-45). These processes can lead to the generation of
complex and highly variable gene families that have the potential
benefit of a greater range of pathogen recognition [e.g., (20)].
Some of the more common examples are the human killer cell
immunoglobulin-like receptor (KIR) genes (46), fibrinogen-
related protein genes (FREPs) in snails (47), variable region-
containing chitin-binding protein (VCBP) genes in marine
protochordates [(48), reviewed in (49)], R genes in higher
plants [reviewed in (23)], and NOD-like receptor genes (NLRs)
in animals (50). This phenomenon of multigene families is also
common in other types of receptors, most notably the G-protein
coupled receptors (GPCRs), which are mounted on the surface of
cells and detect diverse types of external stimuli. These include
chemoreceptors (51) such as olfactory receptors that are the
largest multigene family in vertebrates (52, 53), some of the taste
receptors (54, 55), and other GPCRs that identify large numbers
of environmental molecules and trigger signaling pathways
(51-55).

Here we present an in-depth bioinformatic and phylogenetic
analysis of the sequence diversity of the SpTrf gene family that is
encoded in the S. purpuratus genome sequence. We report an
additional cluster of the SpTrf genes and describe details of both
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the coding and flanking regions of the genes. The results enable a
proposed theoretical evolutionary history for these genes
originating from a last common ancestral (LCA) SpTrf gene,
which subsequently underwent a number of tandem
duplications, ectopic insertions, inversions, and intergenic
indels and point mutations to generate the extant clustered
genes in the genome sequence. While the genes identified in
the sea urchin genome sequence are limited to a single animal,
the analysis of these genes can be used as a basis for further work
to understand genomic instability in the SpTrf gene loci in other
S. purpuratus individuals that have different genotypes and
different numbers of the SpTrf genes. These initial results
suggest that genomic instability may be a key mechanism to
promote diversification of immune gene families in echinoids
that are locked in arms races with their pathogens.

MATERIALS AND METHODS

Bacterial Artificial Chromosome Clones

The sea urchin BAC library that was used to generate the genome
assembly was the source of the BACs used in this analysis (56).
They included BAC 10B1 (GenBank accession number
KU668451; 157472 nt), BAC 10K9 (GenBank accession
number KU668453; 144627 nt), BAC 10M18 (GenBank
accession number KU668450; 74402 nt), and BAC 3104P4
(GenBank accession number KU668454; 118584 nt) (7). The
identification of SpTrf genes in BAC insert sequences, plus the
characterization of element patterns, untranslated regions,
introns, and open reading frames were carried out according to
Oren et al. (7). GenePalette!, a universal software tool for
genome sequence visualization and analysis (57), was used to
identify the locations of individual SpTrf genes within each BAC
insert sequence based on the locations of the SpTrf primer
sequences (R1, F2, F5, F6, R9; see Supplementary Table S1).
The 5" and 3’ ends of the genes were identified using conserved
primer sequences [5'UTR and 3'UTR; Supplementary Table S1;
and see (7)]. SpTrf genes identified in the BAC insert sequences
were added to a pre-aligned set of 121 unique SpTrf genes and
689 ¢cDNAs with known and identified element patterns as
previously reported (11, 19). The deduced amino acid
sequences were aligned by hand in BioEdit (ver 7.2.5) (58) to
identify the exons and to produce a repeat-based alignment and a
cDNA-based alignment as previously reported (12, 19). The
exons and the elements were identified and labeled for each
SpTrf gene and verified based on previously reported genes.
Introns were identified for each gene using the repeat-based
alignment in BioEdit in which the 3" end of exon 1 was used to
identify the conserved GT splice signal that was approximately
54 nucleotides (nt) from the start codon and the conserved AG
splice signal that was located approximately 550 nt from the start
codon [see (59)]. Introns were removed from genes to determine
whether all genes had open reading frames using NBCI Open
Reading Frame Finder®.

"http://www.genepalette.org
*http://www.ncbi.nlm.nih.gov/orffinder

The cDNA sequence of Sp0273 [GenBank accession number
CK828488.1 (10)] was used to identify the 5’UTR and the TATA
box, and the Sp0065 cDNA sequence [GenBank accession
number CK828780 (10)] was used to identify the poly
adenylation sites. GenePalette was used to identify additional
polyadenylation sites in the 3'UTR region of the genes. The
5'UTR and 3'UTR sequences were identified in GenePalette and
verified from partial cDNA sequence data (10).

PRANK Analysis

Computational alignments of the deduced SpTrf proteins were
done using GUIDANCE2? (60-62). Codons were aligned using
the multiple sequence alignment (MSA) algorithm in PRANK*
(63), an alignment-based software program that processes and
identifies the placements of indels. The program was set to trust
insertions (F+). Bootstrap guide-trees of 100 iterations were
generated, which were further used to calculate 400 alternative
alignments using PRANK with F+ before the GUIDANCE2
score was calculated to display whether the alignment was
optimal. GUIDANCE scores were analyzed, however because
the majority of sequences, columns, and amino acids with low
GUIDANCE scores (here defined as >0.8) were associated with
the outgroup sequences, the alignments were left unmodified
prior to further analysis (data not shown). The deduced
translated sequences for the 5" and 3’ flanking regions (FRs),
introns, and intergenic regions (IGRs) were also aligned with
GUIDANCE?2 using PRANK with the same parameters. The
edges of the FRs included the 5"and 3" UTRs and extended to the
location of the flanking GA STRs.

Sequence Similarity and Percent
Mismatch Analysis of SpTrf Genes

Sequence similarity among genes with the same or relatively
similar element patterns was evaluated with three approaches.
i) Percent coverage and percent identity values were established
using the basic local alignment search tool (BLAST?®).
ii) Sequence identity matrices were calculated in BioEdit (ver
7.0.5.3) based on the alignment of the deduced proteins. The
number of identical residues were calculated while treating gaps
as a fifth state to evaluate the similarities among the deduced
proteins. iii) A pairwise distance matrix was calculated with
Molecular Evolutionary Genetics Analysis [MEGA7°, ver 7.0 for
larger datasets (64)] using the codon alignment generated in
PRANK with preset parameters. All three analyses were run on
six regions of the genes that included the 5FR, exon 1, the intron,
exon 2, and the 3’FR, in addition to the IGRs. Percent
mismatches were calculated according to the equation
[pairwise distance/Ln?], in which the results were generated
from the average pairwise distance matrix data for each gene
compared to every other gene, divided by Ln? in which the
superscript 2 indicates the number of sequences that were
compared. A graphical representation of these values was
generated using Excel (Microsoft).

*http://guidance.tau.ac.il/ver2/
*http://wasabiapp.org/software/prank/
®https://blast.ncbi.nlm.nih.gov/Blast.cgi
©http://www.megasoftware.net

Frontiers in Immunology | www.frontiersin.org

November 2021 | Volume 12 | Article 744783


http://www.genepalette.org
http://www.ncbi.nlm.nih.gov/orffinder
http://guidance.tau.ac.il/ver2/
http://wasabiapp.org/software/prank/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.megasoftware.net
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Barela Hudgell and Smith

Evolution of the SpTrf Gene Family

Phylogenetic Trees

MEGA7 was used to generate phylogenetic trees from the
PRANK alignments of the 5FR, exon 2, the intron, and the
3FR (~400 nt for the FRs) to determine the evolutionary
relatedness among the sequences. Representative Trf sequences
were selected from the sea urchin, Heliocidaris erythrogramma
[HeTrf, GenBank accession numbers JQ780171-JQ780321; 29
genes; 39 introns (65)], which were used as the outgroup for
phylogenetic analyses of both exon 2 and the intron of the SpTrf
genes. Additional SpTrf genes (121 genes, 22 introns) were
acquired from Buckley and Smith (19) and used to generate
intron and expanded exon 2 trees (Supplementary Figures S1,
§2). A single Trf gene identified from the Lytechinus variegatus
genome sequence’ [LvTrf; Lv=185/333B3d; NCBI Accession
GCA_000239495.1; Scaffold 232, 80220 to 85000 (66)] was
acquired and included 2500 nt on each side of the gene. The
5FR and 3FR (~400 nt) of the LvTrf gene were used as the
outgroup in the FR alignment of the SpTrf genes. Maximum
likelihood, neighbor joining, and maximum parsimony with pre-
set parameters were used to generate phylogenetic trees.
Bootstrap iterations were set to 500 and nodes with a
bootstrap value of <50 were collapsed. All trees resulted in
similar structure (Supplementary Figures S3, $4).

Dot Plots

Dot plots were generated using YASS® genomic similarity search
tool to identify repeats and regions of similarity among genes
within and among the four gene clusters. The e-value threshold
ranged from 10,000 to e as was optimal for different analyses
(67). Dot plots from YASS were used to evaluate the sequence
variations between allelic BAC 10B1 and BAC 10K9.

Analysis of Intergenic Regions Among
Non-Duplicated Genes

Dot plots were generated using the e-value threshold set to ™.
The IGRs between different genes were compared, which
consisted of 3 kb flanking the 5" and 3’ ends of the allelic A2
and A2a (A2/a) genes, the entire 6.9 kb IGRs between the E2/a
and the E2b/01 genes, 3 kb to the 3 side of the E2b/01 genes,
IGRs between the DIb/e and E2/a genes, and the IGRs between
the DIh/f genes and the GAT STRs.

Verification of Allelic BACs

Sequence variations between allelic BAC 10M18 and BAC
3104P4 were analyzed using GenePalette in which GA and
GAT STRs were mapped using the sequences GAGAGA and
GATGATGAT, respectively, while allowing for a single mismatch.
Primers GA1F-GA3F and GAIR-GA3R (Supplementary Table
S1) were designed to amplify large regions of STRs to evaluate
variations in STR lengths using PrimeSTAR GLX high fidelity
DNA Polymerase (Takara) to ensure as little polymerase slippage
as possible. The PrimeSTAR GLX protocol was 1X PrimeSTAR
GXL buffer, 200 uM of each dNTP, 10-15 pmol of each primer,
10 ng BAC DNA, 0.5 U of PrimeSTAR polymerase in a final
volume of 20 pUL. The PCR program was 95°C for 5 min, followed
by 25 cycles of 95°C for 30 sec, 60°C for 30 sec, and 72°C for 4

7http://whis.caltech.edu/Echinobase/LvAbout
®http://bioinfo lifl.fr/yass/index.php

min with a final extension of 72°C for 7 min and a hold at 4°C.
Amplicons were separated on a 0.75% agarose gel with
Tris-acetate-EDTA buffer (TAE: 40 mM Tris-acetate pH 8.0,
1.0 mM EDTA).

Synonymous vs. Nonsynonymous
Nucleotide Changes

Exon 2 of SpTrf genes with the same element pattern were
compared to identify synonymous vs. nonsynonymous single
nucleotide polymorphisms (SNPs). SNPs were catalogued by eye
from the alignments and verified with Synonymous Non-
synonymous Analysis Program (SNAP’; ver 2.1.1) (68) and
Single-Likelihood Ancestor Counting (SLAC) (69) in
datamonkey'® (70-72). The dN/dS value for each gene was
calculated based on the Jukes-Cantor corrections (73-75).
SNAP was used as an alternative method to evaluate the
dN/dS and the number of synonymous vs. nonsynonymous
substitutions because SNAP was capable of calculating dN/dS
values between two genes rather than a group of genes required
by SLAC. SLAC was used to confirm results for the seven DI
genes. Purifying selection was defined as dN/dS of < 1, whereas
diversifying selection was defined as > 1. Because the DIf and
DIh gene sequences were identical, they were combined and
noted as DIf/h for comparisons to the other DI genes.

RESULTS

Pairs of BAC Inserts Are Likely Allelic
Rather Than Clones That Cover Identical
Genomic Regions

Clusters 3 and 4 Are Allelic

Previous work defined three SpTrf gene clusters from BAC insert
sequence analysis, of which Clusters 1 and 2 were defined as
allelic based on the nearly identical sequences of the genomic
regions that flank these two SpTrf gene clusters (7). The allelic
region for Cluster 3 was not reported because the two tightly
linked SpTrf genes in Cluster 3 were present in both BAC 10M18
and BAC 3104P4 and were reported as replicates of the same
region of the genome (7). This assumption was feasible given the
25X coverage of the BAC library (56). To verify whether these
two BAC inserts were identical or allelic, the sequences were re-
evaluated by dot plot comparison followed by verification using
PCR amplification of the gene clusters and three large flanking
STRs. The two SpTrf genes on BACs 10M18 and 3104P4
encompassed about 10 kb, which was verified by PCR, and had
identical sequences based on comparisons using GenePallete
(Figure 1A, purple angle arrows; Figure 1B). Three large GA
STR islands were associated with the gene clusters based on
GenePallete (Figure 1A and Table 1). PCR amplicons of the
STRs indicated different sizes for the STR2 amplicon for the two
BACs (Figure 1C). This suggested that BAC 10M18 (Cluster 3)
and BAC 3104P4 (Cluster 4) were likely allelic and were
identified as Locus 2 for the SpTrf gene family in the sea
urchin genome.

?https://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html
'%http://classic.datamonkey.org/dataupload.php
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FIGURE 1 | The structure of the SpTrf gene loci. (A) A representative map of the SpTrf loci. Locus 1 has allelic regions with unequal numbers of genes. Although
Clusters 3 and 4 in Locus 2 appear identical, the different sizes of the flanking STR islands indicate that these two clusters are allelic. The colored polygons indicate
the SpTrf genes located in the clusters with the pointed end of the polygon indicating the transcription direction. GA STRs (green triangles) and GAT STRs (black
triangles) flank each gene and large GA STR islands flank Clusters 3 and 4 in Locus 2. The black horizontal line indicates the DNA extending from the 5" and 3’ ends
of the clusters. The colored angle-arrows in Locus 2 indicate the regions amplified by PCR and correspond to the colored bars over lanes in the DNA gels shown in
(B, C). (B) Clusters 3 and 4 in Locus 2 are the same size. The BAC templates for PCR are indicated above the lanes as M18 (BAC 10M18; Cluster 3) or P4 (BAC
3104P4; Cluster 4). Amplicons of Clusters 3 (BAC 10M18) and 4 (BAC 3104P4) indicate identical size. (C) Clusters 3 and 4 in Locus 2 have varying sizes of large
GA STR islands. PCR was carried out for the P4 and M18 BAC clones to amplify the GA STR islands. M indicates the all-purpose Hi-Lo DNA marker (BioNexus),
and sizes of the relevant bands are indicated to the left in (B, C).

Cluster 1 and Cluster 2 Have an Intergenic Region

of Dissimilarity

Previous analysis of Clusters 1 and 2 of Locus 1 (Figure 1A)
report different numbers of SpTrf genes, of which some genes are
unique to a particular cluster based on different element patterns
(7). Cluster 1 (BAC 10B1) has seven SpTrf genes while Cluster 2
(BAC 10K9) has six (7, 30). However, the flanking regions of
these two allelic regions show approximately 99% sequence
identity, which was the basis for reporting their allelic
relationship rather than as two different loci (7). Dot plots of
the BAC inserts for Locus 1 verified their allelic status, but also
identified regions with significant sequence variations in the

TABLE 1 | The second STRisland in Locus 2 alleles are different lengths'.

intergenic regions (IGRs) and in the flanking regions that
surround the clusters (Figure 2). Although most of the region
flanking the clusters generally aligned, Cluster 2 had a large
deletion (Figure 2A, blue bar), in agreement with the previous
report (7). The IGRs between the A2 and B8 genes in Clusters 1
and 2 were different in size and sequence that remained evident
after increasing e-value threshold for the dot plot (67)
(Figures 2A, B). The sequence identity of this region of
dissimilarity in the two clusters was 42% to 48.1% based on
BLAST and BioEdit analysis, respectively. When these sequences
were used to search for other matches in the sea urchin genome
in the NCBI database only poor matches were identified with
percent mismatches of ~45.7% identity (based on results using
MEGA7). A more detailed analysis of the IGRs between the A2
an B8 genes showed that there were two discrete areas of
variation (Figure 2C). The first was 3.8 kb that was only

BAC Cluster Size (nt)?
present in Cluster 2, which was flanked on both sides by
STR1 STR2 STR3  regions of high similarity with Cluster 1 (Figures 2A, C; red
10M18 (M18)° 3 4993 3869 0633 stripes). At the 5’ end of the IGR near the A2 genes in each cluster
3104P4 (P4) 4 4314 3908 2635 was 1.1 kb of non-coding sequence that included the GA STRs.
"These are results from sequence comparisons using GenePallet. ,In the, 3' direction Was 718 ntin Cl,uSter 2 that matched with 96%
2The locations of the STR islands are shown in Figure 1A. ldentlty to 730 nt in Cluster 1 (Flgure 2C, yellow). The second
SAbbreviations for BAC numbers in parentheses correlate with Figure 1C. region of dissimilarity (<40% identity) was 6.1 kb (Cluster 2) and
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FIGURE 2 | The IGRs of Clusters 1 and 2 in Locus 1 include non-matching sequences. (A, B) Dot plots show the comparison between Cluster 1 and Cluster 2. The
dot plot in (A) employed a preset e-value threshold of 10 whereas the dot plot in (B) employed an e-value threshold of 10,000. The central diagonal in the dot plots
indicate the mostly identical sequence of the allelic regions, while lines offset from the central diagonal indicate repeats that are highly similar in either a tandem (green)
or inverted (red) orientation. Highlighted, colored vertical bars in (A) indicate the locations of mismatched sequences between the two clusters. The blue and red bars
show the locations of sequences in Cluster 2 that are absent from Cluster 1 and the green box indicates a region of complete dissimilarity. The arrow between the red
bar and green box in (A) indicates a region of similarity that is located between the two regions of dissimilarity. The black boxes in (A, B) are expanded in (C) to show
details. YASS® was used to generate dot plots with standard parameters (scoring matrix = +5, -4, -3 -4: composition bias correction: gap costs = -16, -4: X-drop
threshold = 30). (C) The IGRs located between the A2/a and B8/a genes in Clusters 1 and 2 are a mixture of similar and dissimilar sequences. The red and orange
polygons indicate the SpTrf genes, A2/a and B8/a genes, that flank these IGRs. GA STRs (green triangles) surround each gene. The horizontal black line indicates
the DNA that extends from the 5’ and 3’ ends of each gene. The lengths of the IGRs between the A2/a and B8/a genes are indicated by upper and lower brackets.
The sizes of the areas within the IGRs are indicated by colors that are coordinated when similar. The red and white striped region is a sequence that is only present
in Cluster 2 and corresponds to the red bar in (A). The yellow region is a short area of similarity, and the area of complete dissimilarity is shown as a polygon of a red

and purple gradient. This figure in not drawn to scale.

9.2 kb (Cluster 1) and extended from the 718/730 nt region of
similarity to the B8 genes (Figure 2C). While Clusters 1 and 2 of
Locus 1 show similarities within flanking regions, there were also
large regions of dissimilarity outside and within the cluster, the
largest variation being the IGRs between the A2 and B8 genes.

Stop Codons and Untranslated Regions in
the SpTrf Genes

The locations of the TATA box and polyadenylation site were
reported previously for six of the SpTrf genes in Cluster 1 (30)
except for the 01 gene, which was identified as part of Cluster 1 in
a subsequent report (7). Those initial reports plus a set of partial
SpTrf cDNA sequences (10) were used to identify or verify the
transcriptional start and stop sites and the sizes of the

untranslated regions for all of the SpTrf genes in the BAC
insert sequences. Results showed that the 5'UTR ranged in size
from 146 nt to 149 nt for 16 of 17 genes with the TATA box
positioned 101 nt to 111 nt from the start codon within the
5'UTR, in agreement with the TATA box positioning described
in Miller et al. (30) (Supplementary Figure S5). However, the
TATA box for the DIg, which was reported to have a point
mutation of TATACA was not verified. Rather, the DIg TATA
box had a TATAAA sequence that was similar to the other genes,
with the exception of D1d with a sequence of TATATA. No other
conserved TATA box sites were identified within the proximity
of the 5’ end of the UTR (the next nearest was distant by 1.3 kb).
A putative initiator (Inr) (76, 77) was identified in all genes and
located 27 nt to the 3’ side of the TATA box with the degenerate
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sequence of T(CA)A(+1)GTT in which the +1 A was conserved
(Figure 3A and Supplementary Figure S5). This sequence is
similar to the Inr sequence in Drosophila genes (76) and is
considered a core promotor similar to the TATA box that can
enhance binding affinity to a promotor element for either RNA
polymerase or a transcription factor and, in some cases, can
direct transcription without a functional TATA box (78).

3'UTRs are defined by the location of the stop codon and the
polyadenylation sequence. Three stop codons have been reported
for the SpTrf genes (19) and cDNAs (11, 12) and are present in the
last element of exon 2 (Figure 3A, indicated as a, b, and c¢).
Analysis of the genes in Clusters 3 and 4 identified a fourth stop
codon in the DIf and D1h genes, in which a SNP at nucleotide 955
changed a tryptophan codon to a stop (Figure 3A, identified as d;
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indicated by rectangles of identical color at the bottom.

FIGURE 3 | All SpTif genes are in frame, have identifiable TATA, Inr sites, one or more stop codons, and most can be aligned with the previously established repeat-
based and cDNA alignments. (A) A representative map of the genes shows the 5" UTR, exons, intron, and 3" UTR. The 5" and 3" UTRs are indicated by white rectangles,
the two exons are indicated as striped rectangles, and the intron is indicated by a solid black line. The range in lengths of the 5" UTR among genes is indicated. The

four colored boxes in 5" UTR indicate putative 5’ regulatory elements and their locations + or — of the conserved +1 A of the start transcription site (red). The TATA box
(vellow), the Inr (blue), and the ATG translation start (green) are indicated. The 3" UTR is variable in length among genes and is indicated by colored brackets showing

the four possible locations of stop codons, which are labeled in lowercase ‘a’-‘d’. (B) The cDNA alignment of genes from the four clusters. The manual alignment was
done in BioEdit by adding the genes in the clusters to a pre-aligned set of cDNAs and genes according to previous publications (12, 19). All possible elements are numbered
at the top and the four possible stop codons are indicated in element 26. The leader (L), the intron (Int), elements (colored rectangles), and gaps (horizontal lines) are indicated
for each gene. Intron type and subtype of element 15 are labeled within each respective rectangle. (C) The repeat-based alignment of the genes from the three clusters. The
manual alignment was done as in (B) according to Buckley and Smith (19). All possible elements are numbered at the top and the four stop codons are indicated in
element 27. The leader, intron, intron type, elements, subtype of element 10, and gaps are indicated as in (B). The six types of repeats in the gene sequence are
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Supplementary Figure S6). This increased the size of the 3’ UTR ~ the ¢cDNA alignment and the repeat-based alignment that are
by 116 nt and decreased the length of exon 2 shortening the  feasible because of the variety of repeats in exon 2 (Figures 3B, C)
protein by 38 amino acids (aa) relative to the other DI genes. Two (11,12, 19). To evaluate exon 2 for the 17 genes in the four clusters,
types of polyadenylation sequences were identified, AATAAA and  the sequences were added to previously published alignments to
ATTAAA, of which most genes [13 of 17] had both (Table 2). understand how the genes in the clusters were related to the other
Overall, the 3'UTR varied in length from 195 nt to 357 nt  SpTrf sequences including their element patterns (Figures 3B, C
primarily based on the positions of the stop codons among the  and Supplementary Figure S6) and intron types (Figure 4A and
genes (Figure 3A). All of the SpTrf genes appeared to be functional ~ Supplementary Figure S8) (7, 12, 19, 30).

with short UTRs, although the D1d gene in Cluster 2 had different

sequences for transcription initiation and for the location of ~ The A2 Genes

transcript trimming prior to polyadenylation. These results ~ The A2 and A2a genes in Locus 1, as reported previously (7, 30),
suggested that these genes have the minimal requirements for ~ have 25 of 27 elements according to the repeat-based alignment
expression, although the regulatory regions for these genes have  and are only missing elements 8 and 17 that encode histidine rich

not been evaluated. regions of the proteins (Figure 3C). Sequence comparison

of exon 2 for the A2 genes showed that they were not identical
Exon 1 Is Conserved Whereas Exon 2 Is (93% identical, 100% coverage; Table 3) because of an indel
Highly Variable Among the Genes of 15 nt starting at nucleotide 950 of the A2 gene alignment
Exon 1 in all SpTrf genes are either 51 or 54 nt in length and  (Supplementary Figure $9). Additional differences in the coding
encode a conserved signal sequence of 18 or 19 aa (12, 19, 30).  region for the A2 genes were due to 12 SNPs, of which 10

The difference is the presence or absence of the second codon for ~ changed the amino acid and seven changed either the charge or
glutamic acid (Supplementary Figure S7), which has been  pI of the amino acid (Supplementary Table S2). The percent
reported previously (11, 12, 19). Eight additional variations in  identity of the full-length A2 genes, including the intron was
exon 1 were identified among the 17 genes in the four clusters, all ~ 88%, in agreement with the minimum percent identities among
of which were nonsynonymous polymorphisms that maintained  all genes (19). Exon 2 had a 98% identity, and exon 1 had a 95%
the non-polar characteristic of the encoded leader. Although the  identity between the A2 and A2a genes indicating that the
function of the leader has not been tested formally, it is predicted ~ majority of the sequence differences were in the introns
to have characteristic hydrophobic and alpha helical structure  (Supplementary Tables S3, S4). The A2 and A2a genes had
(12, 18), which is consistent with secretion of the SpTrf proteins moderately dissimilar (88% identity) y type introns that were
(16) and/or their localization to the plasma membrane (13). positioned in different sister subclades for y introns in the
Overall, exon 1 of the genes in the four clusters was highly  phylogenetic tree of introns (Figure 4A). Differences in the
conserved both in sequence and hydrophobicity and did not  introns were due to one or two nt indels in addition to a
show extensive sequence variation. region of significant variation from nt 354 to the 3’ end of the

Manual alignments of exon 2 have been used previously because  intron (Supplementary Figure S9). The sequence variation
of the large gaps required to optimize the alignments, and these ~ among the A2 vy introns was greater than the introns in most
efforts have generated two possible alignment outcomes denoted as ~ other SpTrf genes with the same element pattern and same intron

TABLE 2 | The 3and 5'UTRs for the SpTrf genes are short and all have conserved and identifiable transcription elements.

Gene Full length transcript (nt) 5’UTR (nt) Exon 1 (nt) Intron (nt) Exon 2 (nt) 3’UTR (nt) Poly-A site’ Poly-A site variant?

A2 1893 148 54 413 1418 273 257 12

B8 1422 149 54 415 1023 196 206 N/A3
Dty 1503 148 51 411 1080 224 202 251

D1g 1511 148 51 412 1080 232 N/A 259
D1b 1511 148 51 411 1080 232 N/A 259
E2 1313 147 54 408 822 290 219 267
o1 1197 148 51 348 77 227 208 167
A2a 1898 147 54 407 1431 266 248 13

B8a 1421 149 54 413 1023 195 209 N/A
D1d 1522 148 51 412 1080 243 263 214
Dte 1622 148 51 410 1080 243 215 264
E2a 1260 147 54 406 822 237 218 266
E2b 1237 148 51 407 810 228 208 167
Cc4 1725 149 54 383 909 230 205 N/A
D1f 1931 146 54 411 963 357 329 378
C4a 1725 149 54 383 909 230 205 N/A
D1h 1931 146 54 411 963 357 329 378

"Nucleotide position of Poly-A site sequence (AATAAA) relative to the stop codon.
2Nucleotide position of Poly-A site sequence (ATTAAA) relative to the stop codon.
SN/A, not applicable, no Poly-A site or Poly-A site variant were found.
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FIGURE 4 | Sequence similarities among the SpTif genes and their putative evolutionary relationships are revealed by similar structures of maximum likelihood trees.
Alignments were performed with PRANK, and Phylogenetic analysis was completed in MEGA7. Phylogenetic trees were generated using three approaches: neighbor
joining, maximum parsimony (see Supplementary Figures S1-S4), and maximum likelihood (shown), all of which resulted in similar tree structure. Colored boxes
shown in the legend indicate the cluster in which the gene is located. Bootstrap values from 500 iterations are indicated for each tree. (A) The intron tree. The intron
types (indicated by o-e labels for separate clades) for each gene was identified using a previously published alignment of introns (19) with the introns from HeTrf genes
defined as the outgroup. (B) The exon 2 tree. Exon 2 from each gene was aligned and the exon 2 sequences from HeTrf genes were defined as the outgroup. (C) The
5FR tree. The 5FR for each gene was selected using GenePallete and corresponded to 400 nt upstream of the start codon. The 5FR of the LvTrf gene was used
as the outgroup. (D) The 3FR tree. The 3FR for each gene was selected using GenePallete and corresponded to 400 nt downstream of the stop codon. The 3FR
of the LvTrf gene was used as the outgroup. (E) The concatenated 5-3FR tree. The 5FRs and 3FRs used in (C, D) were aligned and then concatenated prior to
phylogenetic analysis. The concatenated 5-3’ FR of the LvTrf gene was used as the outgroup.

type. This is not consistent with introns from genes that shared
the same intron type, which tended to have highly similar introns
(93% to 100% identical; Supplementary Table S3). Overall, the
A2 genes were highly similar but not identical, with most of their
sequence variations located in the intron.

The B8 Genes

SpTrf gene sequence analysis from 10 sea urchins indicates that
the genes with a B element pattern are likely common in the
population (19) and that the gene copy number estimate for B
genes in individual animals ranges from one to six (7). Two B8
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TABLE 3 | Percent identity and coverage of the SpTif genes of the same
element pattern are highly similar*.

Genes compared Coverage Identity
A2 A2a 100 98
B8a B8 100 99
Cc4 C4a 100 100
D1f D1d 99 99
D1f Die 99 98
D1f D1y 99 99
D1f D1g 99 98
D1f D1b 99 98
D1f D1h 100 100
D1h D1d 99 99
D1h Die 99 98
D1h D1y 99 99
D1h D1g 99 98
D1h D1b 99 98
D1d Die 100 98
D1d D1y 100 99
D1d D1g 100 98
D1d D1b 100 98
Die D1y 100 99
D1e Dig 100 99
Die D1b 100 99
D1y Di1g 100 99
D1y D1b 100 99
D1g D1b 100 99
E2 E2a 100 99
E2 E2b 97 96
E2a E2b 97 96
o1 E2 82 96
o1 E2a 82 96
o1 E2b 85 97

*These data were generated using NCBI BLAST.

genes are present in the BAC insert sequences; B8 in Cluster 1
(30) and B8a in Cluster 2 (7) based on the elements defined by
the repeat-based and cDNA-based alignments (Figures 3B, C
and Supplementary Figure S6). The B8 genes did not show new
variation in their element pattern relative to previous reports of
other B8 cDNAs and genes (11, 12, 19). The full-length gene
sequences for B8 and B8a were 99% identical including the B
introns (Figure 4A, Table 3 and Supplementary Tables S3, $4),
in agreement with previous results (30). Differences between the
sequences showed 10 SNPs of which five were located in the
exons and four altered the charge or pI of the encoded amino
acid (Supplementary Table S2). A single nt indel was located in
the intron at position 71 (Supplementary Figure S10), and both
B8 genes had a single stop codon in the ‘C’ position in element 27
(Figure 3A). Overall, the B8 genes in Cluster 1 and 2 were highly
similar with a few differences in SNPs and were consistent with
B8 sequences previously reported.

The C4 Genes

Two C genes were identified in Locus 2, C4 in Cluster 3 (7) and
C4a in Cluster 4 (Figure 1A). The C genes are not common in
genomic DNA from individual sea urchins (19), however an
estimate of gene copy number suggests 1 to >5 in 9 of 10 sea
urchins (7). The C4 genes had identical sequences (Table 3,
Supplementary Tables S3, S4 and Supplementary Figure S11)
and matched with 97% identity over a 92% coverage to Sp0376

cDNA [GenBank accession number DQ183179.1 (12)], which is
the only C4 sequence in the SpTrf sequence database
(Supplementary Figure S12). The C4 genes contained a
distinguishing deletion in the type 1 repeat region of exon 2,
which made them distinct from genes with the C2, C3, and C5
element patterns (12, 19). This deletion brought together the first
10 nt of element 2 and the last 35 nt of element 5 and maintained
the reading frame (Figure 3C). The stop codons for both C4
genes were in the ‘b’ position in element 27 (Figure 3A).
Although all C genes previously sequenced from genomic
DNA had o introns (19), the C4 and C4a genes on Clusters 3
and 4 had B introns based on the phylogenetic intron analysis
(Figure 4A). The intron alignment and the intron phylogenetic
tree indicated that the C4 intron sequence shared similarity with
the B8 intron from the 5" end of the intron to nt 285 and from nt
373 to 450 at the 3" end. However, the central region, from nt 286
to 372, shared similarity with the v intron in the A2a gene,
although it had an indel of 32 nt (Supplementary Figure S13).
The fragments of shared intron sequence between the C4 genes
and a gene with a different element pattern was unique among
the SpTrf genes in the genomic clusters. The C4 genes in Locus 2
of the SpTrf gene family were distinct from the other C genes
based on both exon sequence and intron type.

The D1 Genes

There are three DI genes in Cluster 1 known as DI1-yellow (D1y),
DI-green (DIg), and DI-blue (DIb) (30), two DI genes in
Cluster 2 known as DId and Dle, and in Cluster 3 as DIf (7).
Here, we report the DIh gene in Cluster 4 (Figure 1A and
Supplementary Figure S14). All of the DI genes were highly
similar (95% to 100% identical) in both the coding regions and
the o introns with most of the differences identified as SNPs
throughout the sequences (Figure 4A, Table 3 and
Supplementary Figure S14 and Supplementary Tables S3,
$4). The DIf and D1h genes had more SNPs compared to the
DI genes in Locus 1, including a stop codon at nt 955 in position
‘d’ (Figure 3A and Supplementary Figure S6). The DI genes
made up the largest group of genes in the SpTrf gene family (19)
and were the most common element pattern in the sequenced
BAC inserts as reported here and previously (7, 30).

The E2 and 07 Genes

The E genes are as abundant as the B genes based on gene
sequences identified from genomic DNA of individual sea
urchins (19), and all sea urchins have at least one E gene copy
with most predicted to have two to four and some as many as six
copies (7). The E genes are the most highly expressed of the SpTrf
gene family composing 546 of 689 cDNAs reported previously
(11, 12). One E gene is present in Cluster 1, and two, E2a and
E2b, are in Cluster 2 (7, 30). It is noteworthy that the allele
position corresponding to E2b in Cluster 2 is the 0I gene in
Cluster 1 rather than an E2 gene. All 0 genes that have been
identified from c¢cDNA and gene sequences are named such
because of a deletion of the key element used for naming
(element 15 in the cDNA alignment or element 10 in the
repeat-based alignment; Figures 3B, C and Supplementary
Figure S6, blue box) (12). Hence, the allelic positioning of E2b
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and 01 has been noted as unusual. The alignment of the E2 and
the E2a genes indicated 99% sequence identity with a 100%
coverage. In comparison, E2b was 96% identical to the other E2
genes over a 97% coverage (Table 3). The decreased percent
identity for E2b was due to a gap of 12 nt in the first type 1
repeat (element 2 as defined by the repeat-based alignment), and
another of 15 nt in element 27 at the 3" end of exon 2
(Figure 3C and Supplementary Figure S15). Strikingly, the
second gap in E2b matched to an identical gap in the 01 gene
on Cluster 1. Because of this sequence similarity and because the
01 gene was positioned in the same allelic location as E2b
(Figure 1A), analysis of the 0I gene was included in the
comparison among the E2 genes. The 0I gene had a 96% to
97% identity (85% and 82% coverage, an outcome of the deletion
described above) with the E2 genes (Table 3). The element
pattern of the 0I gene was similar to the E2 genes and shared
elements 1 to 6, however, unlike the E2 genes, 01 shared elements
22,23, and 24 with all of the other genes in both loci based on the
repeat-based alignment (Figure 3C). An alignment of the E2 and
01 genes showed that the only differences among the four genes
was a region of 32 nt that was preceded by a gap of 90 nt
(Supplementary Figure S15, yellow highlights). The E2 and 01
genes all had 8 introns (Figure 4A), although the 01 intron had a
deletion of 60 nt making it the shortest intron among the SpTrf
genes (Supplementary Figure S15, yellow highlights). The E2
genes all had stop codons in the ‘a’ position, while 01 had a stop
codon in the b position (Figure 3A). Overall, the E2 genes
showed sequence similarity not only to each other but also to the
0I gene. In turn, the 01 gene had the highest level of similarity
with the E2b gene, with which it appears to be allelic.

The Majority of SNPs and Other
Nucleotide Changes in Exon 2 Are
Non-Synonymous

The SpTrf genes are expressed during sea urchin immune
responses (10-12) and the encoded native proteins function as
opsonins and augment phagocytosis (16). Genes that encode
pathogen binding proteins are often under strong evolutionary
pressure and selection from pathogen contact to optimize
pathogen binding either to diversifying pathogens or to non-
variable PAMPs. To determine whether the genes in the four
clusters were diversifying at different rates relative to each other,
the dN/dS scores were calculated among genes with the same
element pattern (12). Comparisons among genes in these subsets
of element patterns indicated both diversifying (dN/dS > 1) and
purifying (dN/dS < 1) selection, although results did not typically
vary by more than +0.7 (Table 4 and Supplementary Table S5).
The two A2 genes and the two B8 genes had scores indicating
purifying selection relative to each other suggesting that these
alleles had not undergone much divergence. The average dN/dS
value obtained for the DI genes (n = 7) varied depending on the
analytic approach and was inconclusive (1.10565 from SLAC'
and 0.9402 from SNAP’) (Supplementary Table S5). dN/dS
values calculated in SNAP suggested that each of the DI genes
was diversifying differently, and when pairs of DI genes were
compared, results showed that some were undergoing

diversifying selection (dN/dS > 1; DIf, D1h, and DIg) while
others were undergoing purifying selection (dN/dS < 1; Did,
Dle, Dly, and DIb) (Table 4 and Supplementary Table S5).
When nonsynonymous and synonymous nucleotide changes
were identified from an alignment of exon 2 from genes with
the same element pattern they showed a variety of SNPs with the
majority resulting in nonsynonymous changes in exon 2 that
changed the encoded amino acid by either charge or pI
(Supplementary Table S2). These results suggested that the
genes were diversifying or evolving, but at different rates.

Phylogenetic Analysis Suggests
Evolutionary Relationships Among the
SpTrf Genes

Immune genes are often duplicated (reviewed in 37, 79) and the
SpTrf gene family is no exception; duplicated genes are tightly
clustered in discrete regions of the genome (11, 12, 19, 30). Given
the nature of these genes and their function in sea urchin immune
responses (16-18), attempts have been made to understand their
theoretical evolutionary history (29). The previous analysis was
limited to the exons and introns of the genes, and the six internal
repeats in exon 2 because the sequences of the UTRs and IGRs
were unavailable at the time. To address the question of SpTrf gene
family evolution with the currently available sequence data,
phylogenetic analyses were conducted for the SpTrf genes in the
four clusters to evaluate the relationships among the 5FR, the
intron, exon 2, and the 3’FR. FRs were defined as sequences
flanking both sides of the coding region that extended to the
surrounding GA repeats and included the 5" or 3" UTRs.
Sequences of the Trf genes from the sea urchin, Heliocidaris
erythrogramma (HeTrf) (65), were used as the outgroup for
analysis of exon 2 and the intron, while the 5'FR and 3'FR of
the Trf sequences from the sea urchin, Lytechinus variegatus
(LvTrf), were used as the outgroup for the 3FR and 5FR
analysis. To date, Trf genes have been identified in six sea
urchin species (65, 80-82), all of which are members of the
Camarodonta order of euechinoids (83). Of these species,
Lytechinus [LCA ~60 MYA (84)] and Heliocidaris [LCA ~75
MYA (84)] are not members of the Strongylocentrotid family (85)
and therefore were appropriate choices as outgroups. The initial
phylogenetic analysis of exon 2 from 138 SpTrf genes including
those from the two genomic loci described here resulted in a
polytomic tree structure that was an outcome of the large gaps
required for optimal alignments (Supplementary Figure S16).
Although this type of tree structure has been noted previously
because of the mosaic element structure of exon 2, the structure
was uninformative with regard to inferring evolutionary
relationships among the SpTrf genes. Therefore, the dataset for
exon 2 was decreased to only the genes in the clusters in an
alternative approach to parse out putative relatedness among these
genes. The resulting phylogenetic tree showed three major clades
in which the earliest branch was composed of the A2 genes, plus
two sister clades that included a weakly supported cluster of the B8
and C4 genes, and a weakly supported cluster of the E2/01 and D1
genes (Figure 4B). Overall, the phylogenetic analysis of exon 2
suggested possible evolutionary relatedness among the genes.
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TABLE 4 | dN/dS values for genes with the same element pattern show that some are undergoing positive selection while others are undergoing purifying selection.

Genes compared S N
A2 A2a 6 10
B8 B8a 3 5
C4 C4a 0 0
D1f D1d 2 12
D1f Die 3 16
Dif D1y 3 12
D1f D1g 4 15
D1f D1b 5 12
D1f D1h 0 0
D1h D1d 2 12
D1h Die 3 16
D1h D1y 3 12
D1h D1g 4 15
Dih D1b 5 12
D1d Die 5 17
Di1d D1y 5 12
D1d D1g 6 16
D1d D1b 7 12
Die D1y 2 7
Die D1g 3 11
Die D1b 4 7
D1y D1g 1 6
D1y Db 2 2
D1g D1b 1 4
E2 E2a 3 3
E2 E2b 3 7
E2a E2b 2 9

aa’ Sd Sn dN/dS?
7 6 10 0.445545
4 3 5 0.463235
0 0 0 N/AS
8 3 13 1.248227
13 35 16.5 1.365854
10 3 12 1.148936
11 4 15 1.074074
9 5 12 0.686441
0 0 0 N/A
8 3 13 1.248227
13 3.5 16.5 1.365854
10 3 12 1.148936
11 4 15 1.074074
9 5 12 0.686441
13 55 18.5 0.961373
8 5 13 0.735849
11 6 17 0.803922
9 7 13 0.52349
5 25 75 0.857143
6 35 115 0.932432
4 45 75 0.473684
3 1 6 1.714286
1 2 2 0.285714
2 1 4 1.142857
3 3 3 0.283871
6 5 9 0.522556
8 4 11 0.801887

"The number of amino acid (aa) changes that encode either a change in polarity or pl.

2dN/dS values were generated for each gene both manually (first three columns) and by SNAP (last three columns). See Supplementary Table S5 for more detailed calculations of

these values.
SN/A, dN/dIS values cannot be calculated.

However, given the blocks of elements in exon 2, it was necessary
to conduct additional detailed phylogenetic analyses to verify the
pattern of the exon 2 tree. The phylogenetic tree for the introns
initially employed to identify the intron types [see above (19)] was
used to evaluate sequence similarities among introns from the
four clusters with 39 introns from HeTrf genes (65) employed as
an outgroup. The structure of the intron tree was composed
of three strongly supported clades composed of & introns, 7y
introns, plus a mixed clade of o, B, and € introns (Figure 4A
and Supplementary Figures S2, S4). The intron tree clearly
identified the intron types for the SpTrf genes in the four
clusters, which was in agreement with the previous report (19).
The phylogenetic tree of the introns replicated the general
structure of the tree for exon 2 (Figures 4A, B) strongly
supporting the notion that genes with the same element pattern
in exon 2 also share the same intron type.

The coding regions of immune genes are often poorly
conserved either in sub-regions or throughout the coding
regions because of host-pathogen arms race that drives selection
for sequence diversification (9, 38, 45). Therefore, exon 2 may not
be the optimal sequence to evaluate the relatedness among these
genes. As an alternative approach to this problem, the FRs
associated with the SpTrf coding regions were used in a
phylogenetic analysis to avoid the variations in sequence and
length for exon 2. This approach has been reported previously to
understand the phylogeny of mini-genes encoding microRNAs
(86). Phylogenetic trees of the 3FRs and 5FRs were generated in

MEGA?7 using PRANK alignments with the LvTrf 5FR and 3’FR
as the outgroup sequences. The 5FR tree had two major clades in
which Clade I consisted of the 5FRs from the 0I gene, the A2
genes, the E2 genes, and three of the DI genes (Figure 4C). Clade
II was composed of two sister sub-clades of which one contained
the remaining D1 5FRs and the second included the 5FRs from
the B8 and C4 genes. Although the bootstrap value was low for the
node separating these two sister groups, this 5FR tree structure
was consistent with the structure of the intron tree (Figure 4A).
The 3FR tree showed good support for two major clades
composed of the 3FRs from the A2 genes in one clade, and the
3’FRs from the other genes in the second clade. The 3'FRs from
genes with similar element patterns clustered into four sub-clades
composed of i) the B8 and C4 genes, ii) the E2b and 01 genes,
iii) the E2 and E2a genes, iv) and the DI genes (Figure 4D).
Similarities among the structures of the phylogenetic trees for
exon 2, and both of the FR trees indicated that FR sequences
surrounding genes of the same element pattern were also similar
and sufficiently different from those associated with genes of
different element patterns to result in structural agreement
among phylogenetic trees (Figures 4A, C, D).

Because of the variation in the structures of the 5FR and 3'FR
trees, a third assessment was carried out. The 5FRs and 3’FRs
(both ~ 400 nt in length) were aligned and then concatenated for
each gene to generate the 5-3'FR alignment and tree (Figure 4E).
Alternatively, the 5-3'FR sequences were concatenated and then
aligned which gave tree structures that were essentially the same
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(data not shown). This was done to understand the possible
evolutionary relationships among the genes without the coding
and intron regions that may have affected or driven the outcome
of tree topographies due to both length and sequence complexity
of those regions of the genes relative to the short sequences of 5’
FR and 3'FR. By analyzing the longer, concatenated 5-3FR
sequences, each nucleotide and each difference was weighted less
in the final tree calculations. The 5-3FR tree generated a more
robust and definitive tree with regard to the sequence
relationships among the genes (Figure 4E). Results showed
that the 5'-3'FRs from the DI genes formed a single clade with
two sub-clades (Figures 4E, i, ii) composed of i) the 5-3FRs
from the D1g, D1y, D1b, and DIe genes and ii) the DId, DIf, and
DIh genes. Unexpectedly, the 5-3"FRs from the DIe and DId
genes from Cluster 2 were separated into different sub-clades
(Figure 4E, light red boxes). Furthermore, the 5-3FR from DId
clustered with the 5’-3'FRs from DI genes in Locus 2 (Figure 4E,
light red vs. blue boxes). The 5'-3'FRs from the B8 and C4 genes
clustered together consistently and were sister to the DI clade,
and the 5-3FRs from the E2 and E2a genes also clustered
together. The overall structure of the 5-3FR tree showed two
sister clades with a ladderlike structure for the rest of the tree.
The similarities in the structures of the three FR trees
(Figures 4C-E) indicated that the SpTrf genes could be
separated into two major groups in which the D1, B8, and C4
genes may have had a shared evolutionary history, while the
E2, 01, and A2 genes may have undergone a separate
evolutionary history.

Percent Mismatches Highlight Sequence
Similarities Among Genes of Different
Element Patterns

A complementary approach to using phylogenetic trees to derive
evolutionary relationships among the SpTrf genes is to calculate
the percent mismatch between pairs of genes. These values give a
general view of gene sequence similarities and whether those
similarities may be due to random chance or to true similarity. A
similar analysis was reported using a pairwise distance matrix for
the full-length genes that included the introns and four flanking
regions [see Figure 9 in (30)]. Here, we used the same approach
to analyze the 5FR, exon 1, the intron, exon 2, and the 3’FR to
reveal the relatedness between each gene with every other gene
based on the pairwise distance scores (Supplementary Table S6).
The results are presented as percent mismatch scores for easier
visualization (Figure 5). The A2 genes showed low percent
mismatch scores against each other for the 5FR, the intron,
exon 2, and the 3’FR, with the 5FR showing the greatest
mismatch (Figure 5A, red line). Although the 5FRs of the two
A2 genes showed higher mismatches of 18% to 30%, exon 1
showed a percent mismatch that was within the range of scores
against the other SpTrf genes, which was consistent with the
sequence conservation of this exon. The percent mismatch scores
for the A2 introns vs. other SpTrf introns (14-22%) were similar
to the percent mismatch scores for exon 2 (15% + 1%), however
the mismatch scores for the 3’FR were much higher (48-57%)
(Figure 5A). These data verified that the A2 genes were similar to

one another and were equally dissimilar to all the other
SpTrf genes.

The DI genes in each of the four clusters had nearly identical
percent mismatch scores among them. Hence, the percent
mismatch scores were averaged for those DI genes in the two
clusters in Locus 1, which reduced the complexity of the data. The
two DI genes in Locus 2 were identical and analyzed as a single
sequence termed DIh/f. Pairwise comparisons among the DI gene
sequences showed very low percent mismatches for the intron,
exon 2, and the 3’FR, whereas the mismatches for the 5FR and
exon 1 had greater variation (Figure 5B, green lines;
Supplementary Table S7). The two DI genes in Cluster 2, DIe
and D1d, had different percent mismatches for the 5’FR compared
to the set of DI genes in Cluster 1, indicating sequence differences
between the DI genes in the two clusters of Locus 1. Furthermore,
the mismatches for the 5FR among D1 genes from different loci
and mismatches with genes of different element patterns showed a
similar range of variation (Figure 5B). When the DI genes were
compared to genes with different element patterns, the percent
mismatch scores varied among regions and element patterns. The
E2 and 01 genes (Figure 5B, purple and pink lines) showed
relatively high percent mismatches against the DI genes for the
5FR and the intron but intermediate scores for exon 2 and the
3’FR. Comparisons between the DI genes and the B8 genes
(Figure 5B, orange line) and the C4 genes (Figure 5B, brown
line) showed intermediate percent mismatch scores for the intron
with scores for exon 2 and the 3’FR that were similar to the scores
for the DI genes vs. the E2 and 01 genes (Figure 5B).

The comparison between B8 and B8a showed nearly identical
low mismatch scores for all regions (Figure 5C), similar to
results for the DI genes. The percent mismatch scores for exon
1 between the B8 genes and the other genes were within the same
range (7% to 12%). There were two outcomes for the percent
mismatches for the introns of the B8 genes compared to introns
from the other genes, with a relatively high mismatch scores
against the A2, 01, and E2 genes, and low scores against the DI
and C4 introns (Figure 5C). Interestingly, the percent
mismatches for both B8 genes compared to the C4 gene were
low for the 5FR (Figure 5C, green and brown lines) along with
the 5FR against the DI-y, g, b, e genes (Supplementary Table
§7). The mismatch scores for the 5FR of the B8 genes against the
A2, E2, 01, and DIf/h/d ranged from 20% to 33%, whereas the
percent mismatch scores for the 3'FR were lower for all genes
(16% to 20%) except between the allelic B8 genes and the C4
genes (Supplementary Table S7). The percent mismatch scores
for the C4 genes compared to the other SpTrf genes showed
similar results as that for the B8 genes (Figures 5C, D). The
lowest percent mismatch scores for the C4 genes across all
regions was against the allelic C4 followed by the B8 genes and
the DI genes (Figure 5D). These results were in agreement with
the phylogenetic tree results, which suggested that the DI, BS,
and C4 genes shared greater sequence similarity with each other
than with the E2, A2 and 01 genes.

The comparison between the E2 and E2a genes showed low
mismatch scores throughout the sequences of these alleles
(Figure 5E, lavender line), and although the scores against the
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FIGURE 5 | Relatedness among the genes can be inferred from percent mismatch scores for the 5FR, exon 1, the intron, exon 2, and the 3FR. Pairwise
comparisons among all genes are shown for the FRs, exons, and the intron. The X axis in the graphs indicates the calculated percent mismatch score for each pair
of genes and the Y axis indicates the region in the gene. Solid lines, dashed lines, and dotted lines are used to identify the pairs of genes compared. The color of the
line corresponds to the color of the genes shown in Figure 1A with the exception of the D7 genes, which are all shown as green lines. Below each graph is a table
that gives the percent mismatch scores for each region graphed above. (A) The A2 genes vs. other SpTrf genes. (B) The average percent mismatch of D7 genes vs.
other SpTrf genes. (C) The B8 genes vs. other SpTrf genes. (D) The C4 genes vs. other SpTrf genes. (E) The E2 genes vs. other SpTrf genes. (F) The 07 genes vs.
other SpTrf genes. Percent mismatch [pairwise distance/Ln?] was calculated from the pairwise distance matrix scores generated with MEGA7 using the PRANK
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E2b gene were low for exon 1, the intron, and exon 2, higher
mismatch scores were noted for both FRs (Figure 5E, dark
purple lines). When the three E2 genes were compared to the
other SpTrf genes, all showed much higher percent mismatch
scores for the intron and exon 2, except in the case of the 0I gene,
which had low mismatch scores for exon 1, the intron, and exon
2 (Figure 5E, pink lines). Similar results were obtained when the
regions of the 0I gene were compared to the other SpTrf genes
(Figure 5F). The 01 gene had low percent mismatch scores at the
5FR and the 3FR against the same regions in the E2b gene but
had much higher percent mismatches compared to the E2 and
E2a genes (Figure 5F, light purple vs. dark purple lines). These
scores were comparable to scores for the 5FR”and 3’FR of the E2
genes and 01 genes against the 5FR and 3'FR for the other SpTrf
genes (Figure 5F). The percent mismatch scores were consistent
with the clustering of the 0I and E2 genes, specifically with the
E2b gene, in the phylogenetic trees (Figure 4). Overall, these
results indicated sequence similarity between the D1, B8, and C4
genes in all regions, similarity between the E2 and 01 genes, and
indicated that the A2 genes were equally dissimilar to the other
SpTrf genes in these clusters.

A Modified Hypothesis for the Edges of
the Segmental Duplications in the SpTrf
Gene Clusters

Tandem segmental duplications have been noted in the SpTrf
gene clusters in Locus 1 based on dot plot analysis, phylogenetic
analysis of intergenic segments, and calculations of pairwise
sequence diversity between pairs of genes (7, 30). Previous
reports based on dot plots indicate that the edges of the
segmental duplications are the GAT STRs that surround and
are positioned near the 3" end of the DI and E2 genes [Figure 6A,
red brackets (30)]. However, with the addition of the SpTrf genes
in Locus 2 (Clusters 3 and 4), the placement of the edges of the
segmental duplications did not match the previously published
results for Cluster 1 (30). Dot plot analysis of Cluster 3 compared
to itself indicated that the two genes, C4 and DIf, plus their
flanking regions were very similar, suggesting a 2.7 kb segmental
duplication (Figure 6B and Supplementary Figure S17, offset
diagonals) in agreement with a previous report for the DI genes
in Cluster 1 (30). Dot plots for the C4a and D1h genes in Cluster
4 showed identical results (data not shown). However, unlike the
previous report, the 5" end of the DIf/h segmental duplications
were located at the large GA STR island (Figure 6B; see also
Figure 1A, STR 2) and the 3’ end was located at the short GA
STR near the 3FR of the DIf/h genes. Similarly, the C4/a
segmental duplications of 2.8 kb were positioned between the
short GA STR near the 3’ side of the DI1f/h genes and the 3’ end
of the duplications were positioned near the large GA STR
islands (Figure 6B, brackets and offset diagonals; see also
Figure 1, STR 3). In these segmental duplications the GAT
STRs (Figure 6B, black triangles and associated dark gray bars)
were located in the center of the offset diagonals and therefore in
the center of the segmental duplication rather than at the edges.
These results suggested that the GA STRs rather than the GAT
STRs defined the edges of the segmental duplications in Locus 2.

The edges of the segmental duplications in Cluster 2 have been
assumed to be the same as those in Cluster 1 based on the allelic
status of these clusters (7). However, when dot plots were used to
compare Locus 2 to Locus 1, a different outcome was identified
relative to previous reports (7, 30). The dot plots of Cluster 3
compared to Clusters 1 or 2 indicated that the GA STRs were the
most likely edges of the segmental duplications rather than
the GAT STRs (Figures 6C, D). This redefined the edges of the
segmental duplications for the DI genes in Locus 1 as GA STRs
and indicated that they were the same size as reported previously
(~4.5 kb). The new location of the duplications was a shift of 3 kb
towards the end of the clusters in which the A2 genes were
positioned (Figure 6A, black brackets). The exception to this
revised positioning of the segmental duplications in Locus 1 was
the IGRs between E2 and DIb in Cluster 1 and E2a and Dle in
Cluster 2. The dot plot results indicated that the duplications
terminated at the GAT STR located 5’ of the DIb and DIe genes
(Figures 6C, D and Supplementary Figure $17), reducing the
size of these particular duplications. To confirm the edges of the
segmental duplications, alignments of the IGRs between linked
genes was done using PRANK (IGRs were located between B8/a::
Dly/d, the linked DI genes, DIb/e:E2/a, and C4/a:DI1f/h) and
percent mismatch scores were calculated. Results were <10%
mismatch for the B8/a:D1y/d-IGRs, the C4/a:DIf/h-IGRs, and
for all the IGRs between the linked D1 genes (Figure 7, light blue
and light purple). In comparison, the DIb/e::E2/a-IGRs in Locus 1
had >79% mismatch compared to the other IGRs indicating that
they were not part of discernable segmental duplications
(Figure 7A, red). Representative results for the percent
mismatches between C4/a:DI1f/h-IGRs and the other IGRs
illustrated putative segmental duplications based on the results
in the Locus 2 dot plots in which the edges of the duplication
events were positioned at the GA STRs rather than the GAT STRs
(Figures 7B, C, green vs. black triangles). These data suggested an
alternative interpretation of the segmental duplications for this
gene family and included the B8 and C4 genes in the duplication
events with the DI genes, which had not been recognized previously.

The Intergenic Regions Show Isolated
Regions of Sequence Similarity

Small Regions of Shared Sequence Similarity Exist
Among the IGRs Between the A2/a, 01,

and D71 Genes

While the results presented above suggest an evolutionary
relationship between the DI, B8, and C4 genes and between
the E2 and 0I genes, there was little to suggest any sequence
similarity outside of the coding regions between these two
subsets of segmental duplications or with the A2 genes in this
gene family. To understand the evolutionary relationship
between these two subsets of SpTrf genes and the A2 genes, a
region of 3 kb upstream of the 5FRs and downstream of the
3’FRs of the A2/a genes (Figure 8A, red brackets) were compared
to the i) IGRs between the GA STR islands and DIh/f genes
(DIf/h:GA-IGRs) and ii) the IGRs between the E2/a genes
and E2b/01 genes (E2/a::E2b/01-IGRs) (Figure 8A and
Supplementary Figures S18A-D). Dot plot analysis identified
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FIGURE 6 | Representative dot plots of Cluster 3 compared to other SpTrf clusters indicates that the GA STRs are the likely edges of the segmental duplications in
both loci. (A) A portion of Cluster 1 shows the region with the segmental duplications and the D7 genes. The previously reported D7 segmental duplications are
indicated at the top of the figure [red dotted brackets (30)] and the revision to the proposed segmental duplications are indicated on the bottom (black brackets). The
arrow indicates the directional shift of the proposed edges of the segmental duplications. (B-D) Representative images of a gene cluster or portion of a gene cluster
are located to the left and top of each dot plot. Colored polygons indicate genes and transcriptional direction. Green triangles represent GA STRs and black triangles
represent GAT STRs. The central diagonal in (A) shows the main alignment of cluster 3 against itself, while lines that are offset from the central diagonal in all dot
plots indicate the locations of repeats or highly similar regions. Diagonal dark green lines indicate similar regions in the same orientation whereas, dark red solid lines
indicate regions of inverse orientation. The highlighted horizontal and vertical lines of multiple colors (matching to the genes at the top or side) are added to the dot
plots to illustrate the location of matched sequences. Dark green areas indicate the locations of GA STRs and dark gray areas indicate the locations of the GAT
STRs. (B) Cluster 3 vs. Cluster 3. (C) Cluster 3 vs. a subset of genes in Cluster 1. (D) Cluster 3 vs. a subset of genes in Cluster 2. YASS® was used to generate dot
plots with standard parameters (scoring matrix = +5, -4, -3 -4: composition bias correction: gap costs = -16, -4: e-value threshold = 10: X-drop threshold = 30).

a 700 nt region in the 5" end of the A2/a genes that contained two
fragments (Figure 8A, red boxes 1 and 2) with sequence
similarity to two separated regions in the DIf/h:GA-IGRs in
which fragment 1 was positioned 1.4 kb from the 5" end of the
Dif/h genes (Figure 8A, green boxes 1 and 2). Fragment 2 was
located 300 nt from the 5" end of the DIf/h genes, similar to its
location of 350 nt from the 5’ end of the A2/a genes. Fragment 1
was separated from fragment 2 by 730 nt in the D1f/h::GA-IGRs
but was separated by only 30 nt in the 5" end of the A2/a genes.
Fragments 7 and 8 in the 5" end of the A2/a genes were also

identified in the E2/a:E2b/01-IGRs but were absent from the
DI1f/h:GA-IGRs (Figure 8A, red boxes 7 and 8). Fragments 7
and 8 were 3 kb from the 5" end of the E2b/01 genes and
separated by 130 nt (Figure 8A, pink vs. red boxes 7 and 8).
There were three regions of similarity between the DIf/h:GA-
IGRs and the E2/a:E2b/0I-IGRs (Figure 8A, green vs. pink
boxes 3-5). Fragments 3-5 were larger than fragments 1 and 2
associated with the A2/a genes and together composed lengths of
1456 nt to 1483 nt. Fragments 3 and 4 were positioned next to
each other in the DIf/h:GA-IGRs but were separated by 520 nt
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in the same direction as indicated by the pointed polygon labeled with the gene name. From left to right across the figure are blocks that represent the IGRs, GA and/
or GAT STRs, the 5FR, the exon 1, the intron (narrow region), the exon 2 with the gene name, and the 3FR. The thin dotted lines indicate how the sequences are linked
together in their respective clusters and do not indicate sequence. The double bars in some IGRs indicate sequence that was not analyzed and is not shown. Percent
mismatches for all blocks are color coded based on the gradient key. (C) The percent mismatch values for the regions of all SpTrf genes compared to the D7f/h indicates
regions of similarity and dissimilarity. Results are color coded according to the gradient key.

in the E2/a::E2b/01-IGRs (Figure 8A, green vs. pink boxes 3 and
4). Fragment 5 was 170 nt to 213 nt in length depending on the
number of repeats in the GA/GAT STRs. This region was
positioned within the E2/a:E2b/01-IGRs and matched to the
GA/GAT STRs that made up the boundary of the 5FR of the
DIf/h genes. Fragment 5, which was associated with the DIf/h
5FRs, also matched to the GA/GAT STRs that were located
closer to the E2b/0I genes and constituted the boundary of the
5FRs. Only one region matched across all three regions
(Figure 84, indicated with an asterisk), which was fragment 2
or 7 in the 5’ end of the A2/a genes that was also identified within
fragment 4 associated with the E2/a::E2b/01-IGRs and the DIf/h::

GA-IGRs. No regions of similarity were identified to the 3"side of
the E2b/01 genes compared to the other IGRs (not shown in
Figure 8). However fragment 6 (Figure 8A, red box 6) was
identified on the 3" end of the A2a gene, which matched to a
sequence located within the E2/a::E2b/01-IGRs and was
positioned 730 nt from the 3FRs of the E2/a genes. Fragment
6 was located 1350 nt from the 3'FR of the A2a gene and was
inverted relative to fragment 6 associated with E2/a:E2b/01-
IGRs. Fragment 6 was only identified in the 3" end of the A2a
gene and was missing from the 3" end of the A2 gene because this
was a region of dissimilarity relative to the A2 IGR (Figure 2C,
red and white striped triangle). While the 5" end of the A2 gene
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FIGURE 8 | Comparisons the IGRs between the A2, E2, 01, and D1f/n genes identify short regions of similarity. (A) The D7f/h::GA-IGRs and E2/a::E2b/01-IGRs are
compared to each other, and both are compared to the 5" and 3’ ends of the A2/a genes (indicated by red brackets). (B) The D1f/h::GA-IGRs, D1d/e::E2/a-IGRs,
and the E2/a::E2b/01-IGRs are compared. Genes are indicated by the polygon labeled with the gene name and are colored according to Figure 1A and are flanked
by UTRs (open boxes). The genomic DNA is indicated by horizontal black lines that passes behind the genes and includes the IGRs and flanking regions. Genes
without color were not included in the analysis and are shown for orientation and comparison to Figure 1A. GA (green triangles) and GAT (black triangles) STRs are
indicated. The colored boxes above and below the black horizontal line indicate regions of similarity as identified from dot plots from the YASS genomic similarity
search tool set to a threshold of €™2°. Areas of shared sequence among IGRs are numbered for clarity; see text for detailed description. Dotted lines connect the
regions of similarity between IGRs including regions in the same (black lines) and inverted (red lines) orientation. This figure is drawn to scale. * indicates regions of

and the E2/a::E2b/01-IGRs were not identical to the DI1f/h:GA-
IGRs that were indicative of duplications, there were small
fragments of shared sequence. These short fragments of
sequence confirmed that there was sequence similarity outside
of the coding regions of these genes that linked the DI, B8, and
C4 segmental duplications with the E2 and 01 duplications and
with the A2 genes.

There Are Fragmented Regions of Shared Sequence
Similarity in the D1b/e::E2/a-IGRs

The shared sequence fragments in the 5"and 3’ ends of the A2/a
genes, in the E2/a:E2b/01-IGRs, and in the DIf/h:GA-IGRs
suggested that shared sequences may also be identified for the
IGRs between the E2/a genes and the DI1b/e genes (D1b/e:E2/a-

IGRs). These IGRs were of interest because the D1b/e genes were
missing the 5" end of the proposed DI/B8/C4 segmental
duplications based on results of dot plot comparisons to Cluster
3 (Figure 6), and because these IGRs were short (3.4 kb)
(Figure 8B) and located to the 5’ side of the DIb/e genes and
the E2/a genes. To understand the complexity of these IGRs, the
DIf/h:GA-IGRs and the E2/a::E2b/01-IGRs were compared to the
DIb/e:E2/a-IGRs (Figure 8B; Supplementary Figures S18E, F).
Results from the dot plots of the DIb/e:E2/a-IGRs indicated
three short fragments of similarity, 1 - 3, that were present in the
corresponding DIf/h::GA-IGRs (Figure 8B, green boxes 1 - 3).
These fragments were in the same orientation in both loci relative
to the local DI gene. There were four short fragments of similarity,
4 - 7, located in the E2/a::E2b/01-IGRs and the DI1b/e::E2/a-IGRs
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(Figure 8B, green and purple boxes 4 - 7). Of these four
fragments, all but fragment 6 were in the same orientation as
the local D1b/e genes, whereas fragment 6 was oriented the same
orientation as the local E2b/01 genes. This result, in addition to
the dot plots (Figure 6) indicated that fragments 4, 5, and 7 were
likely associated with the DI rather than the E2 gene given that
they were oriented in the same direction. However, the fragments
4, 5, and 7, which were in the same orientation as the DIb/e
genes, were not positioned in the same order in the E2/a::E2b/01-
IGRs indicating a possible sequence scrambling in this region.
Taken together these data indicated that the regions between the
D1Ib/e and the E2/a genes contained small fragments of sequence
similarity in the IGRs of the DI genes and one small fragment
that might be attributed to the E2 genes. This was similar to the
results for the A2/a analysis (Figure 8A). These results illustrated
that, while the 5" IGRs of these gene were not identical, there
were short fragments of sequence similarity shared among them
that would be consistent with genomic instability for both of the
loci that harbor the SpTrf gene clusters. These shared regions
may have implications not only to the relatedness among the
genes but also among the IGRs.

DISCUSSION

A Hypothetical Evolutionary History of the
SpTrf Gene Family in the Sequenced Sea
Urchin Genome

The necessity for diverse and constantly diversifying genes in the
face of a broad array of pathogens leads not only to the
generation of complex immune systems but to complex
immune gene families. Duplications, insertions, inversions,
meiotic mispairing, unequal crossing over, and gene
conversion all have the potential to result in large and diverse
immune gene families encoding proteins that keep pace in the
arms race with the pathogens (20, 23, 24, 37, 38, 87). Based on
the sequence relationships among the genes in the four clusters
including their FRs and IGRs, we propose a hypothetical
evolutionary history of how the SpTrf gene clusters were
generated. The LCA SpTrf gene plus a portion of its 5" and 3’
flanking regions is the starting sequence for this evolutionary
history. SpTrf underwent initial duplications and ectopic
insertions into the same locus and into a different region of the
genome to establish a second locus (Figure 9A). These two loci
subsequently underwent gene diversification to generate the
ancestral D1, E2', and the A2 genes (Figure 9B). The two loci
containing the ancestral D1’ or E2' genes underwent independent
secondary duplication events, generating several tandem genes of
the same element pattern and forming the initial clusters
(Figure 9C). These gene duplicates acquired internal SNPs and
indels thereby continuing sequence diversification (Figure 9D).
One outcome was the sequence variation among the DI genes
and the appearance of the ancestral B8/C4’ gene from DI
duplications in Locus 2 (Figures 9C, D). The other outcome
was the diversification of the E2 genes to generate the E2b gene
on Locus 1 (Figures 9C, D). Next, a larger duplication and

ectopic insertion moved at least two DI genes plus the ancestral
B8/C4’" gene from Locus 2 into Locus 1 that was positioned
between the A2 and E2 genes (Figures 9D, E). This may have
been the ancestral change that resulted in genes facing in both
directions in Locus 1 and which scrambled the IGR sequences
between the DI and the E2 genes. The mismatch in the number
of DI genes between Clusters 1 and 2 in Locus 1 is likely due to
tertiary duplications that generated the DIy/g genes, which may
have occurred either by a direct duplication of the DIy/g genes in
Cluster 1 (Figure 9F) (30), or by an ectopic insertion from the
allele in Cluster 2 (not shown). Finally, the individual SpTrf genes
underwent further internal indels and SNPs generating the
individual sequence variation among the genes, including the
generation of the 01 gene from the E2b gene and the B8 and C4
genes from the B8/C4’ ancestor. The final outcome is the extant
clusters and loci in the sequenced sea urchin genome (Figure 9G).

Supporting Evidence for the Evolutionary
History of the Extant SpTrf Family

The evolutionary history of the SpTrf gene family is based on the
results presented herein. We speculate that the sequence of the
LCA SpTrf gene had the majority of elements and the maximum
number of repeats in exon 2 (Figure 3C), which subsequently
underwent at least two duplications and ectopic insertion events
(Figure 9A). This is based on alignments of the IGRs of the
extant genes, which reveal a number of small regions of sequence
similarity across all extant SpTrf genes reported here. We also
hypothesize that an SpTrf gene with the maximum number of
repeats in exon 2 would be the most parsimonious candidate
gene sequence to generate other SpTrf genes, which are short
genes with fewer elements, through deletions rather than vice
versa through element or repeat duplication and diversification.
The A2 genes are an exception to this as previous research has
proposed that A2 genes have undergone a large duplication event
in exon 2 that increased their size and gave them the designation
of long genes (29). We hypothesize that the A2 genes underwent
a separate evolutionary history compared to the E2’ and DI’
genes after the duplication and ectopic insertions of the SpTrf
(Figures 9A, B). The separate evolutionary history of the A2/a
genes is based on the early branching position of the A2/a genes
in the phylogenetic trees that infers a later divergence of the short
SpTrf genes, and is based on the distant location of the A2/a
genes in Locus 1 that are separated by non-conserved IGRs. This
notion is consistent with a previous report speculating that long
genes have unique type 1 repeats (see Figure 3C, type 1 repeats
are shown as red rectangles) that underwent a separate
evolutionary history from the type 1 repeats in the short SpTrf
genes (29).

The similarities between the E2/a:E2b/0I-IGRs and the DIf/h:
GA-IGRs support the idea of a shared evolutionary history
among the genes, which extends beyond the similarities of the
coding regions and into the 3" ends of the genes. The E2/a::E2b/
0I-IGRs in Locus 1 contain large regions that match to sequences
in the D1f/h::GA-IGRs in Locus 2 that are also present in most of
the DI segmental duplications. These matching regions are
dispersed within the large E2/a::E2b/01-IGRs but are relatively
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FIGURE 9 | A model for the theoretical evolutionary history of the SpTrf gene clusters in the sequenced genome based on gene duplications, ectopic insertions, and
deletions. Each step in this theoretical evolutionary history of the gene clusters is indicated on the right with numbers and labeled on the left (A-G). Genes and their
direction are indicated by colored polygons and labeled with the gene name. The prime () associated with a gene name indicates a hypothetical LCA version of the
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The horizontal gray line indicates the IGRs that flank the genes. Open boxes surrounding the genes in (A, B) indicate edges of proposed duplication regions. Curved
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ended arrows indicate a recent duplication event. Large black Xs indicate gene deletions. This figure is not drawn to scale..

contiguous in the DIf/h:GA-IGRs. This suggests that the E2/a::
E2b/01-IGRs may have originally been similar in size to the DIf/
h::GA-IGRs and underwent a number of insertion events to
separate the regions of sequence similarity and elongate the IGRs

to their current size (Figures 9C, D). On the other hand, when
the DIf/h::GA-IGRs are compared to the Dib/e::E2/a-IGRs only
short, fragmented regions of sequence similarity are identified.
These short regions may have been the outcome of the proposed
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ectopic insertion of the D1/B8/C4 region from Locus 2 into Locus
1 (see below; Figures 9D, E). This evolutionary history suggests
that both the DI and the E2 genes were both products of the
SpTrf ancestral gene duplication that subsequently underwent
separate evolutionary histories to generate the two subsets of E2/
01 and D1/B8/C4 genes (Figure 9).

The sequence diversification of the DI genes, which are
present in segmental duplications, are based on sequence
analysis of the DI genes and their flanking regions. In
agreement with Miller et al. (30), the DI genes appear to be a
product of multiple recent duplication events that is also
supported by our phylogenetic analysis and percent mismatch
scores, which includes similarities among the FRs. However,
based on our analyses, we hypothesize that the ancestral D1’ gene
was most similar to the DI genes in Cluster 1 plus DIe in Cluster
2 (Figures 9C-G) because these genes are more similar to each
other than to the remaining DI genes in either locus. This result
is also consistent with purifying selection detected for the DIy/b/e
genes and for diversifying selection for the DIf/h genes.
Although the identity between DIf and DIh could be based on
their location in Locus 2, a more in-depth analysis suggests a
specific evolutionary relationship among the DI genes in the two
loci, which is based on two levels of results. First is a
hypothesized evolutionary relationship among the DI genes
with the B8 and C4 genes. This is based on the sequence
similarity among these genes along with the updated edges of
the DI segmental duplications to include the C4 and B8 genes.
Both the B8 and C4 genes may have once initially been a product
of a DI’ gene that underwent diversification events in Locus 2 to
generate a descendant LCA B8/C4’ gene (Figures 9C, D), along
with duplications of an unknown number of additional DI genes,
that would later go on to become the extant C4 and B8 genes.
Although the number of duplicated D1 genes that may have been
present in Locus 2 is unknown, the large islands of GA STRs
associated with this gene cluster may be the remnants of gene
deletions (7). Secondly, there are indications that the B8 genes
and several DI genes in Locus 1 may have been the product of
a duplication and ectopic insertion event from Locus 2
(Figures 9D, E). This idea is supported by the sequence
similarity between the B8 and C4 genes, which are located in
allelic positions in the two extant loci. A recent evolutionary
history between the B8 and C4 genes is supported by
phylogenetic analysis, percent mismatch scores, and dot plot
analysis. The duplication of the D1”and B8/C4’ genes in Locus 2
and the location of their insertion in Locus 1 (Figures 9D, E) is
supported by the IGR sequences on either side of the B8 and D1
genes, which are either highly dissimilar (A2/a::B8/a-IGRs) or
show signatures of sequence scrambling (DIb/e::E2/a-IGRs)
(Figures 9D, E). The outcome of the ectopic insertion is a
heterogeneous cluster of genes in Locus 1 the include both DI
derived genes and E2 derived genes that are present in opposite
orientations (Figure 9F).

The appearance of the E2 and 0I genes is proposed to have
originated with the E2’ gene (Figure 9B). E2’ initially underwent a
tandem duplication to form two E2 genes in Locus 1 (Figures 9B,
C). This was followed by sequence diversification of one of the E2

genes into E2a and E2b in Cluster 1 and Cluster 2, respectively
(Figures 9C, D). The E2b allele in Cluster 1 subsequently acquired
multiple deletions that resulted in the 0I gene (Figure 9G)
including a large deletion in exon 2 that maintained the reading
frame either fortuitously or through unknown repair mechanisms
(88). The evolutionary relationship between the E2 and 01 genes is
noteworthy because the sequence similarity between the 0I gene
and the three E2 genes has not been reported previously.

CONCLUSION

Overall, the evolutionary history of this gene family suggests a
number of duplications, deletions, insertions, conversions, and
point mutations, all of which lead to the distinct clustering and
sequence similarity among the members of this gene family
(Figure 9). It must be noted, however, that this hypothetical
evolutionary history is based on genes from a single sea urchin and
that different sea urchins have been proposed to contain different
repertoires of this gene family (8, 12, 19). Variations among SpTrf
gene repertoires can be considered as a population level
immunological benefit in an environment with many potential
pathogens. Additional gene sequence data and cluster structure
from other individual sea urchins will either clarify and verify this
history or will expand the numbers of genes and their sequence
variations to further illuminate the evolution of this gene family.
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Figure S1 | Phylogenetic trees of exon 2 using Neighbor Joining (A) and Maximum Parsimony (B) show the expanded branches of exon 2
from the HeSpTrf genes. The phylogenetic trees of exon 2 were carried out using multiple methods in MEGA7. Bootstrap values based on 500
iterations are indicated at each node, and nodes with values below 50 were collapsed. The accession numbers for the SpTrf sequences used to
generate these trees can be found in the materials and methods section in the main paper. The HeTrf sequences are reported in Roth et al. (Ref. 65
in the main paper).
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Figure S2 | The maximum likelihood phylogenetic tree of introns from the SpTrf genes with HeTrf introns as the outgroup. Phylogenetic
analysis of Trf introns using MEGA7 shows the types of SpTrf introns and the details of the HeSpTrf intron clade indicated by the bracket. Bootstrap

values from 500 iterations are shown at each node, and nodes with values below 50 were collapsed. The accession numbers for the SpTrf sequences
used to generate these trees can be found in the materials and methods. The HeTrf sequences are reported in Roth et al. (Ref. 65 in the main paper).
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Figure S3 | Phylogenetic Trees using Neighbor Joining and Maximum Parsimony of the 5'FR, 3'FR, and Exon 2 indicate similar tree
structure and gene clustering. Phylogenetic analysis of 3'FR, 5'FR, and exon 2 was done in MEGA7. Bootstrap values are based on 500
iterations and are indicated at each node, and nodes with values below 50 were collapsed. Highlighted regions of the same color indicate clades
with the same genes. The accession numbers for the sequences used to generate these trees can be found in the materials and methods. The
HeTrf sequences are reported in Roth et al. (Ref. 65 in the main paper). The LvTrf sequences were acquired from the Lytechinus variegatus
genome (http://whis.caltech.edu/Echinobase/LvAbout; Davidson et al., Ref 66 in the main paper).



98

D1yintron
Alpha(D6)10-024
Alpha({C5)4-15369
Alpha(B7)y10-054
D1gintron
Alpha{D7)2-005
D1bintron
D1dintron
Alpha{C3)10-050

75

100

Alpha(B3Y10-017
Alpha(C2)-1545
D1eintron

D1hintron
439: D1fintron

7 Epsilon(B6)10-007
—1 Epsilon(D5)10-004

Epsilon(01)10-028

100 |: Cdintron
C4a

92

93

Baintron

100

30

{ Beta(B5)10-011
Beta(B8)10-042
Beta(F1)02-006

Beta(B3)4-2415
Baaintron

_ stp——— Gamma(G2)10-010

61

L Gamma(E10)4-1528
Gamma(G3)10-013

AZaintron
—— AZintron

99

64

sl Gamma(A2)2-036

EZ2aintron

Delta(E9)2-090

Delta(E 3)2-067

{ Delta(08)2-050
O1intron

91

EZbintron

| [—— Delta(E2)2-020
92— Delta(E7)2-073

HeTrf Introns

Alpha(B7y10-054
DAdintron
Alpha(C3)10-050
Alpha(D7)2-005
Alpha(D6)10-024
D1gintron

Dyintron

Alpha(C5)4-1536g

DAbintron

Alpha(C214-1545

Alpha(B3)10-017

DAeintron

DAfintron

100

D1hintron

|: Cdintron

Beta(B5)10-011
_|: Beta(B8)10-042
B8intron
B8aintron
TE Beta(B3)4-2415
" L— Beta(F1)02-006

Epsilon(D5)10-004

100

&9

_|: Epsilon(B6)10-007
34 Epsilon(01)10-028

i|: EZ2infron
EZ2aintron

L1

Delta(E3)2-067
Delta(E9)2-090

88 I: Delta{08)2-050
O1intron

EZbintron
Defta{E2)2-020
Delta(E7T)2-073

37 I: AZintron
Gamma(A2)2-036

Azaintron
Gamma(E10)4-1528
Gamma(G2)10-010
Gamma(G2)10-013

HeTrf Introns



Figure S4 | Phylogenetic Trees of Introns using Neighbor Joining (A) and Maximum Parsimony (B) are used to indicate introns of similar
sequence and designation. Phylogenetic analysis of introns used multiple methods in MEGA7. Bootstrap values from 500 iterations are indicated
at each node, and nodes with values below 50 were collapsed. The accession numbers for the sequences used to generate these trees can be found
in the materials and methods. The HeTrf sequences are reported in Roth et al. (Ref. 65 in the main paper).
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A2 CGGTCTGGTACGAAAGTGA- ~TTTCAATCTATGATAGAAAGCCTATAAATTCAGTGATCCAGCAGATAGTTATT TTTGGAGCTCGTTCTCTTATAGAAGGCTACGAACCTATAGAAAGCT -ATAGCATCGGAGAGACCTATTACTAACATGGAGGTG
B8 CGGTCTGGTACTAGTGTGAGATATCAATCTAGGGTAGAAAACCTATAAATTCAGTGGCCCAGCAGGTAGTTGTT TTTGGAGCTAGTTCTCTCTTGGAAGGCAACGAATCTAGAGAAAGCTTGTAGCATCGGAGAGACCT ~ - TACAAACATGGAGGTG
Dly CGGACTGGTACGAAAGTGA - TTTCAAGCTATGATAGAAAGCCTATAAATTCAGTGATCCAGCAGATAGTTATT TTTGGAGCTCGTTCTCTCTTAGAAGACAACGAATCTAGAGAAAGCT -ATAGCATCGGAGAGACCTATTACTAACATGG TG
Dlg CGGACTGGTACGAAAGTGA - TTTCAAGCTATGATAGAAAGCCTATAAATTCAGTGATCCAGCAGATAGTTATT TTTGGAGCTCGTTCTCTCTTAGAAGACAACGAATCTAGAGAAAGCT -ATAGCATCGGAGAGACCTATTACTAACATGG TG
D1b CCGTCTGGTACGAAAGTGA- ~TTTCAATCTATGATAGAAAGCCTATAAATTCAGTGATCCAGCAGATAGTTATT TTTGGAGCTCGTTCTCTCTTAGAAGACAACGAATCTAGAGAAAGCT -ATAGCATCGGAGAGACCTATTACTAACATGG TG
E2 CGGTCTGGTACGAAAGTGA - ~TTTCAATCTATGGTAGAAAGCCTATAAATTCAGTGATCCAGCAGATAGTTGAT TTTGGAGCTCGTTCTCTTATAGAAGGCTACGAATCTAGAGAAAGCTTGTAGCATCGGAGATACCT - - TACAAACATGGAGGTG
01 CGGTCTGGTACGAAAGTGA - TTTCAAGCTATGGTAGAAAGCCTATAAATTCAGTGATCCAGCAGATAGTTGAT TTTGGAGCTCGTTCTCTTATAGAAGGCTACGAACCTATAGAAAGCT - ATAGCATCGGAGAGACCTATTACTATCATGG TG
A2a CGGTCTGGTACGAAAGTGA - TTTCAATCTATGATAGAAAGCCTATAAATTCAGTGATCCAGCAGATAGTTCTT TTTAGAGCTCGTTCTCTCTTGGAAGGCAACGAATCTAGAGAAAGCTTGTAGCATCGGAGAAACAT - TACAAACATGGAGGTG
B8a CGGTCTGGTACTAGTGTGAGATATCAATCTAGGGTAGAAAACCTATAAATTCAGTGGCCCAGCAGGTAGTTGTT. TTTGGAGCTAGTTCTCTCTTGGAAGGCAACGAATCTAGAGAAAGCTTGTAGCATCGGAGAGACCT -~ TACAAACATGGAGGTG
Did CGGTCTGGTACGAAAGTGA- - TTTTAATCTATGTTAGAAAGACTATATATTCAGTGATCCAGCAGATAGTTATT TTTGGAGCTCGTTCTCTTATAGAAGGTTACGAATCAAGAGAAAGCT -ATAGCATCGGAGAGACCTATTACTAACATGG TG
Dle CGGTCTGGTACGAAAGTGA- - TTTCAATCTATGATAGAAAGCCTATAAATTCAGTGATCCAGCAGATAGTTATT TTTGGAGCTCGTTCTCTCTTAGAAGGCAACGAATCTAGAGAAAGCT - ATAGCATCGGAGAGACCTATTACTAACATGG TG
E2a CGGTCTGGTACGAAAGTGA - TTTCAATCTTTGGTAGAAAGCCTATAAATTCAGTGATCCAGCAGATAGTTGAT TTTGGAGCTCGTTCTCTTATAGAAGGCTACGAATCTAGAGAAAGCTTGTAGCATCGGAGATACCT - - TACAAACATGGAGGTG
EZb CGGTCTGGTACGAAAGTGA - TTTCAAGCTATGGTAGAAAGCCTATAAATTCAGTGATCCAACAGATAGTTGTT TTTGGAGCTCGTTCTCTTATAGAATGCTACGAACCTATAGAAAGCT ATAGCATCGGAGAGACCTATTACTATCATGG TG
c4 CGGTCTGGTACTAGTGTGAGATATCAATCTAGGGTAGAAAGCCTATAAATTCAGTGGCCCAGCAGGTAGTTGTT. TTTGGAGCTAGTTCTCTCTTGGAAGGCAACGAATCTAGAGAAAGCTTGTAGCATCGGAGAGACCT -~ TACAAACATGGAGGTG
D1f CGGTCTGGTACGAAAGTGA - TTTCAATCTTTGGTAGAAAGCCTATAAATTCAGCGATCCAGCAGATAGTTTTT TTTGGAGCTCGTTCTCTTATAGAAGGCAACGAACCTATAGAAAGCT -ATAGCATCGGAGAGACCT -~ TACAAACATGGAGGTG
Cda CGGTCTGGTACTAGTGTGAGATATCAATCTAGGGTAGAAAGCCTATAAATTCAGTGGCCCAGCAGGTAGTTGTT. TTTGGAGCTAGTTCTCTCTTGGAAGGCAACGAATCTAGAGAAAGCTTGTAGCATCGGAGAGACCT -~ TACAAACATGGAGGTG
Dlh CGGTCTGGTACGAAAGTGA - TTTCAATCTTTGGTAGAAAGCCTATAAATTCAGCGATCCAGCAGATAGTTTTT TTTGGAGCTCGTTCTCTTATAGAAGGCAACGAACCTATAGAAAGCT -ATAGCATCGGAGAGACCT - - TACAAACATGGAGGTG

Figure S5 | Sequence elements that bind basal transcription factors in the 5'UTR for initiation of gene expression are conserved in all of the
SpTrf genes except D1d. The Drosophila Inr sequence is TCA(+1)(GT)T(TC), whereas in the SpTrf gene sequences it is T(CA)A(+1)GTT (blue).
The TATA box (yellow), the conserved +1 A within the Inr (red) and the start codon (green) are shown. Artificially inserted gaps are indicated by
dashes. The alignment was done using PRANK.
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E2 RNESSDEDGRPHPR~~»~~~~~~HHGRHHOHHHR~NHTIEGHQGHNETGD
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A2 DHDRPMFEMRPFRFNPLGRKPFGDHPFGRRNHTEGHQGHNETGDHPHRHHSKNVDGDQDTGHHGHHGHHEHHHHQ
A2a DHDRPMFEMRPFREFNPLGRKPFGDHPFGRRNHTEGHQGHNETGDHPHRHHSKTVDGDODTGHHGHHGHHEHHHHQ
B8a HTEGHQGHNETGDHPHRHHNKTGDGDQDRPMFEMRPFWVNPFGRKPFGDRPEFDRR
B8 HTEGHQGHNETGDHPHRHHNKTGDGDODRPMFEMRPFWVNPEGRKPFGDRPFGRR
c4 RKPFGDRPFGRRNHTEGHQGHNETGDHPHRHHNQTGDGDQDR
Cda RKPFGDRPFGRRNHTEGHQGHNETGDHPHRHHNQTGDGDQDR
D1f RKPFGDRPFGRRNHTEGHQGHNETGDHPHRHHNKTRDGDQODR
D1lh RKPFGDRPFGRRNHTEGHQGHNETGDHPHRHHNKTRDGDQODR
D1d RKPFGDRPFGRRNHTEGHQGHNETGDHPHRHHNKTRDGDQODR
Dle RKPFGDRPFGRRNHTEGHQGHNETGDHPHRHHNKTRDGDQDR
Dly RKPFGDRPFGRRNHTEGHQGHNETGDHPHRHHNKTRDGDQODR
Dlg RKPFGDRPFGCRRNHTEGCHQGHNETGEHPHRHHENKTRDGDODR
D1b RKPFGDRPFGRRNHTEGHQGHNETGDHPHRHHNKTRDGDQDR
E2 HPHRHHNKTGDGDODRPMFEMRPFRENPEFGRKPEGDRPEGRR
E2a HPHRHHNKTGDGDODRPMFEMRPFRENPFGRKPFGCDRPEDRR
E2b HPHRHHNKTGDGDODRPMFEMRPFRENPEFGRKPEGDRPEGRR

01 RKPFGDRPFGRRNHTEGHQGHNETGDHPHRHHNKTRDGDQDR
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Figure S6 | The repeat based amino acid alignment of the mature SpTrf proteins indicates that exon 2 is in frame for all genes. The amino
acid sequence deduced from the genes in the clusters were aligned by hand in BioEdit (ver 7.2.5). The protein names are indicated to the left, and
the ruler above each alignment indicates the amino acid position. The ~ indicates the insertion of artificial gaps in the alignment where the sequences
do not match. The * indicates a stop. The blue highlighted region defines element 15 of the alignment, which is used to name the genes/proteins

according to Terwilliger et al. (Ref. 12 in the main paper).
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Figure S7 | The alignment of the deduced amino acids from
exon 1 for each SpTrf protein shows slight variations in the
leader. The gene names are listed to the left and the numbers
above indicate the amino acid position in the deduced proteins.
The A2 sequence was used for comparison to the other proteins
and the dots indicate matching amino acids. The ~ indicates the
insertion of artificial gaps in the alignment where the sequences do
not match. The alignment was done manually in BioEdit (ver
7.2.5).
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GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTCCTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTCCTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
GTAAGAAATCAAATTATTACTCGGTATTACTTGATAAGTGCTAAATATAGAGCCAACGAATAG
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CGAATGGCAAAAGATAAGAATTCTCTTTATGTTCAACCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAGTGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAGTGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAGTGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAGTGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAATGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAATCAGAATTAGGCGTTTTGAATAT
CGAGTGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTCTGAATAT
CGAATGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAATGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAATGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAGTGGCAAAAGATAAGAATTATCTTTATATTCAATCTGGTTTTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAGTGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAGTGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAGTGGCAAAAGATAAGAATTATCTTTATGTTCAATCTGGTATTCAAGTTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAATGACAAAAGATGTGTATTATGTTTACGTTCAATCTGGTATTCAAATTTAATTCAGTCAGAATAGGGCATTTTGAAGGT
TGAATGACAAAGGATGTGTATTATGTTTACGTTCAATCTGGTAATCAAATTTAATTCAGTCAGAATTAGGCGTTTTGAATAT
TGAATGACAAAGGATGTGTATTATGTTTACGTTCAATCTGGTAATCAAATTTAATTCAGTCAGAATTAGGCGTTTTGAATAT
TGAATGACAAAGGATGTGTATTATGTTTACGTTCAATCTGGTAATCAAATTTAATTCAGTCAGAATTAGGCGTTTTGAATAT
TGAATGACAAAGGATGTGTATTATGTTTACGTTCAATCTGGTAATCAAATTTAATTCAGTCAGAATTAGGCGTTTTGAATAT
TGAATGACAAAGGATGTGTATTATGTTTACGTTCAATCTGGTAATCAAATTTAATTCAGTCAGAATTAGGCGTTTTGAATAT
TGAATGACAAAGGATGTGTATTATGTTTACGTTCAATCTGGTAATCAAATTTAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAATGACAAAAGATGTGTATTATCTTTATGTTCAATCTGGTATTCAAATTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAATGACAAAAGATGTGTATTATCTTTATGTTCAATCTGGTATTCAAATTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
CGAATGACAAAAGATGTGTATTATCTTTATGTTCAATCTGGTATTCAAATTCAATTCAGTCAGAATTAGGCGTTTTGAATAT
TGTTTCTTTACCATCTGGTTTTCAAATTCATTTCGGTTGGAATTAGGCGTTTTGAATAT
TGTTTCTTTACCATCTGGTTTTCAAATTCATTTCGGTTGGAATTAGGCGTTTTGAATAT
TGTTTCTTTACCATCTGGTTTTCAAATTCATTTCGGTTGGAATTGGGCGTTTTGAATAT
TGTTTCTTTACCATCTGGTTTTCAAATTCATTTCGGTTGGAATTGGGCGTTTTGAATAT
TGTTTCTTTACCATCTGGTTTTCAAATTCATTTCGGTTGGAATTGGGCGTTTTGAATAT
TGTTTCTTTACCATCTGGTTTTCAAATTCATTTCGGTTGGAATTGGGCGTTTTGAATAT

ATGAAAAAA~ATGTTTCA TGGTTCTTTACAATCTGGTTTTCAAATTCAATTCGGTTAAAATTAGGCGTTTTGAATAT
ATGAAAAAA~ATGTTTCA TGGTTCTTTACAATCTGGTTTTCAAATTCAATTCGTTTAGAATTAGGCGTTTTGAATAT
ATGAAAAAA~ATGTTTCA TGGTTCTTTACAATCTGGTTTTCAAATTCAATTCGGTTAAAATTAGGCGTTTTGAATAT
ATGAAAAAA~ATGTTTCA TGGTTCTTTACAATCTGGTTTTCAAATTCAATTCGTTTAGAATTAGGCGTTTTGAATAT
ATGAAAAAA~ATGTTTCA TGGTACTTTACAATCTGGTTTTCAAATTCAATTCGGTTAAAATTAGGCGTTTTGAATAT
ATGAAAAAA~ATGTTTCA TGGTTCTTTACAATCTGGTTTTCATATTCAATTCGTTTAGAATTAGGCGTTTTGAATAT
ATGAAAAAA~ATGTTTCA TGGTTCTTTACAATCTGGTTTTCATATTCAATTCGTTTAGAATTAGGCGTTTTGAATAT
AATGAAAAAA~ATGTTTCA TGGTACTTTACAATCTGGTTTTCAAATTCAATTCGGTTAAAATTAGGCGTTTTGAATAT
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GAAAAAACATCAAAGAAGGCGAGTTACCATTCTTATTTGTCACCTGCCATAACCCAATGTAGAGCTAAAGATAATAATGCAGAATGTGATCAC
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ACATC GAAGAAGACAAGTGTTATCAATCATTCGTCACCTAGCATAACCCAATGTAGACCTAAATATCATAATGCAGAATGTGA
ACATC GAAGAAGACAAGTGTTATCAATCATTTGTCACCTAGCATAACCCAATGTAGACCTAAATATCATAATGCAGAATGTGA
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Figure S8 | The alignment of SpTrf introns. A
representative number of introns of each intron type were
selected from the set of genes reported by Buckley and Smith
(Ref. 19 in the main paper) and used to generate an alignment
with the introns from the genes from the four clusters. The
intron types and the SpTrf genes from which they were
obtained (indicated in brackets) and their numerical
identification as found in (Buckley and Smith, Ref. 19 in the
main paper) are listed to the left. The nucleotide position is
indicated above the alignment. The ~ indicates the insertion
of artificial gaps in the alignment where the sequences do not
match. The alignment was done using PRANK.
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Figure S9 | The alignment of the A2 genes shows minor sequence variations plus a small indel. The names of the genes are
located to the left and above each alignment is a ruler indicating the nucleotide position. Dots in A2a indicate a matching nucleotide
to A2. The ~ indicates the insertion of artificial gaps in the alignment where the sequences do not match. The ” indicates the start
and end of the intron. The alignment was done with ClustalW in BioEdit (ver 7.2.5).
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Figure S10 | The alignment of B8 genes shows single nucleotide variations throughout the sequences. The names of the genes
are listed to the left and above each alignment is a ruler indicating the nucleotide position. Dots in B8 represent a matching nucleotide
to B8a. The ~ indicates the insertion of a few artificial gaps in the alignment where the sequences do not match. The ” indicates the
start and end of the intron. The alignment was done using ClustalW in BioEdit (ver 7.2.5).
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Figure S11 | The alignment of the C4 genes shows that the two genes are identical. The names of the genes are listed to the left
with their cluster number is indicated by CL. Above each alignment is a ruler indicating the nucleotide position. Each nucleotide is
represented in a distinct color and a corresponding dot in C4 represents a matching nucleotide to C4a. The ” indicates the start and end
of the intron. The alignment was done with ClustalW in BioEdit (ver 7.2.5).
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Figure S12 | The alignment of the C4a gene against the cDNA, Sp0376, shows a 98% identity
with six gaps. NCBI BLAST analysis of C4a (Shjct) from Cluster 4 is compared to Sp0376
(query). The score, expect, identities, gaps, and strand are indicated at the top. The numbers at
the end of each line indicate the nucleotide position for each sequence in the alignment. Areas of
low-complexity in the sequence, as determined by the DustMasker program (Morgulis et al.,
2006, see refence below), are indicated by lowercase letters. This low-complexity region encodes
multiple histidines.
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Figure S13 | The alignment of C4 intron shows regions of sequence similarity with the introns from the B8a and the A2a genes. The
gene names are listed to the left and the ruler above each alignment indicates the nucleotide position. Yellow highlights indicate positions
of nucleotide mismatches. The ~ indicates the insertion of artificial gaps at the locations of putative indels. The alignment was done with
ClustalW in BioEdit (ver 7.2.5).
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Figure S14 | The alignment of the D1 genes shows nucleotide variations that are present throughout the sequences. The gene
names are listed to the left and nucleotide position is indicated above. All sequences are compared to D1f and the dots in the
sequences below indicate matching nucleotides. The ~ indicates gaps in the alignment where the sequences do not match and
artificial gaps are inserted. The " indicates the start and end of the intron. The alignment was done using ClustalW in BioEdit (ver.

7.2.5).
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Figure S15 | The alignment of the E2 genes and 01 gene shows sequence similarity among these genes. The names of the genes
are listed to the left and above each alignment is a ruler indicating the nucleotide position. The E2 gene in Cluster 1 is used for the
comparison to the other sequences. Dots represent a matching nucleotide to the top sequence. The ~ indicates the insertion of
artificial gaps in the alignment where the sequences do not match. The alignment includes sequence from both exons and the *
indicates the start and end of the intron. The highlighted regions indicate large indels in the intron and in exon 2 of the 01 gene.
The alignment was done with ClustalW in BioEdit (ver 7.2.5).
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Figure S16 | A maximum likelihood phylogenetic tree of exon 2 shows a loss of tree structure with the addition of 121 SpTrf genes. The
phylogenetic tree was used to evaluate the 17 SpTrf genes from the clusters in the BAC insert sequences (labeled g185) with 121 additional SpTrf
exon 2 sequences (labeled s185, ¢185, and aCF) from (Buckley and Smith, Ref. 19 in the main paper). Highlighted regions of the same color
indicate genes with the same element pattern based on the cDNA alignment (Figure 3; Terwilliger et al., Ref. 12 in the main paper). The tree was
constructed in MEGAY using an alignment generated in PRANK. Bootstrap values from 500 iterations are indicated at most nodes and those below
50 were collapsed. The accession numbers for the sequences used to generate this tree can be found in the materials and methods.
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Figure S17 | Dot plots of Cluster 3 vs. other SpTrf Clusters shows the GA STRs as edges of gene duplications. Representative clusters are
located to the right and top of the dot plots in which the polygons indicate genes and directionality, the green triangles represent GA STRs and black
triangles represent GAT STRs. The central green diagonal in (C) indicates the main alignment of Cluster 3 vs. Cluster 3. Diagonal lines in green
outside of and parallel to the central diagonal indicate repeat regions in the same orientation. Red diagonal lines that are perpendicular to the central
diagonal indicate regions of sequence similarity that are in opposite orientation. Highlighted horizontal and vertical areas in each plot (shown in
multiple colors that match to the genes above or to the right) are added to aid in comparisons among the clusters. Dark green areas in both horizontal
and vertical orientations indicate the locations of GA STRs while dark gray lines indicate the locations of the GAT STRs. (A) Cluster 2 vs. Cluster
3. (B) Cluster 1 vs. Cluster 3. (C) Cluster 3 vs. Cluster 3. Dot plots were done in YASS (http://bioinfo.lifl.fr/yass/index.php) using standard
parameters (scoring matrix = +5, -4, -3 -4: composition bias correction: gap costs = -16, -4: e-value threshold = 10: X-drop threshold = 30).
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Figure S18 | Comparisons among IGRs identify regions of sequence similarity. The diagonal lines in each dotplot indicate regions of similar
sequence. The green diagonals indicate regions in the same orientation, whereas the red diagonals indicate regions in opposite orientations. (A)
The 5" and 3’ ends of the A2/a gene vs. E2/a::E2b/01-1GRs. (B) The 5’ and 3’ ends of the A2/a gene vs. D1f/h::GA-IGRs. (C) The E2/a::E2b/01-
IGRs vs. D1f/h::GA-IGRs. (D) The E2/a::E2b/01-1GRs vs. D1b/e::E2/a-IGRs. (E) The D1b/e::E2/a-IGRs vs. D1f/h::GA-IGRs. (F) The 5" and 3’
ends of the A2 and A2a genes vs. E2/a::E2b/01-1GRs. The black arrow in (C) indicates variation between the two sequences showing an inverted
region that includes repeats. YASS genomic similarity search tool (http://bioinfo.lifl.fr/yass/index.php) was used to identify sequence similarities
with the following parameters (scoring matrix = +5, -4, -3 -4: composition bias correction: gap costs = -16, -4: e-value threshold = e : X-drop
threshold = 30).
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Supplementary Tables



Table S1 | Primers used to identify allelic BACs and verify BAC insert assembly

Annealing
Name Sequence Tm (°C) temperature (°C)
Cluster 10k 1R  TGTTGAGAAGAAGCGAAGCGAG 56 60*
Cluster 10k 1F  GTAGACCTGCACTATG 56 60*
GAlF TCCATAAGAGAGTTCTATTTCC 58 60*
GAL1R ATTTACTCAGAGGTACCCA 59 60*
GA2F TTTGAGTTAACGCCCTTC 59 60*
GA2R CCAGCTGCATAAGGAAA 59 60*
GA3F TACAAACTTCCTACTTCGTG 59 60*
GA3R AATCTTTCATCTGTGGTAGG 59 60*
R1 TCTSCATTCCAYCMGGCC 64 56
F2 AAGMGATTWCAATGAACKRCGA 58 55
F5 GGAACYGARGAMGGATCTC 59 56
F6 GAAGAAGAAACTGATGCTGCC 64 55
R9 CTTHARGTGGTGAARATGTCG 59 55
5'UTR YTDTAGCATCGCAGAKACCT 60 55
3'UTR WAATTCTACACCTCRGCGAC 61 55

*The annealing temperature is based on the PrimeStar GLX Protocol as recommended by the
manufacturer (Takara Bio).



Table S2 | Most single nucleotide changes among genes of the same element pattern
result is nonsynonymous changes in the amino acids of the deduced proteins

Deduced proteins laal 2aa? Change® Acharge* Apl® Number®
compared
A2 A2a Q R * PU/EC+ * 1
A2 A2a S R * PU/EC+ * 2
A2 A2a R L * EC+/H * 3
A2 A2a G S * SC/PU 4
A2 A2a R G * EC+/SC 5)
A2 A2a Q H * PU/EC+ * 6
A2 A2a T S PU/PU 7
A2 A2a N T PU/PU 8
A2 A2a E G * EC-/SC 9
A2 A2a L F H/H 10
B8 B8a S A * PU/H 1
B8 B8a Q H * PU/EC+ 2
B8 B8a G D * SC/EC- 3
B8 B8a R G * EC+/SC 4
B8 B8a Vv | H/H 5
D1if/h D1d T M PU/H 1
D1f/h D1d P S * SC/PU 2
D1if/h D1d R K EC+/EC+ 3
D1f/h D1d Vv F H/H 4
D1if/h D1d E K EC-/EC+ * 5
D1f/h D1d H D EC+/EC- * 6
D1if/h D1d M S H/PU 7
D1f/h D1d L F H/H 8
D1if/h D1d P L SC/H 9
D1f/h D1d P S SC/PU 10
D1f/h D1d Q H PU/EC+ * 11
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E2 E2b M T * H/PU 3
E2 E2b E D EC-/EC- 4
E2 E2b R S * EC+/PU * 5
E2 E2b H P * EC+/SC * 6
E2 E2b G R * SC/EC+ * 7
E2a E2b Q R * PU/EC+ * 1
E2a E2b D G * EC-/SC 2
E2a E2b M T * H/PU 3
E2a E2b G S * SC/PU 4
E2a E2b E D EC-/EC- 5
E2a E2b R S * EC+/PU * 6
E2a E2b H P * EC+/SC * 7
E2a E2b G R * SC/EC+ * 8
E2a E2b D G * EC-/SC * 9

1Amino acid associated with the protein listed in the first column.

2Amino acid associated with the protein listed in the second column.

3The asterisk in this column indicates a difference in amino acid properties between the two
proteins that are compared.

“PU, polar uncharged; SC, special cases; EC+, electrically charged positive; EC-, electrically
charged negative; H, hydrophobic

The asterisk in this column indicates a difference in the pl of the amino acid R group between the
two proteins that are compared.



Table S3 | Percent identity for each gene region shows similarity among
genes with the same element pattern*

Genes
Compared | 5'FR Exonl1 Intron Exon2 3'FR
A2 A2a| 81 95 88 98 86
A2 B8 67 95 70 42 55
A2 B8a| 68 95 69 42 58
A2 C4 69 95 63 46 54
A2 Dly| 72 93 70 55 51
A2 Dlg| 72 93 70 55 52
A2 Dlb| 72 91 70 55 52
A2 Did| 70 95 70 55 58
A2 Dle| 72 93 70 55 54
A2 DI1f | 83 98 70 55 55
A2 E2 71 100 54 45 57
A2 Ez2a| 70 100 55 45 57
A2 E2b| 74 95 54 43 58
A2 01 74 93 42 48 57
A2a B8 69 96 63 42 50
A2a B8a | 70 96 62 43 55
A2a C4 71 96 61 47 52
A2a Dly | 72 87 64 56 49
A2a Dlg| 72 87 64 56 50
A2a Dib | 72 85 64 56 50
A2a D1d | 67 89 64 56 56
A2a Dle | 72 87 64 56 52
A2a Dif | 77 93 64 56 53
A2a E2 69 95 55 46 55
A2a E2a | 68 95 55 46 55
A2a E2b | 67 89 55 44 55
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*These results were generated by NCBI BLAST.



Table S4 | Percent identity matrix for full-length genes highlights similarities among genes

A2 A2a B8 B8a C4 Dly Dlg Dlb Did Dle Dif E2 E2a E2b 01
A2 88 53 56 53 61 60 61 61 61 62 49 50 46 44
A2a | 88 51 54 50 59 57 58 58 58 58 46 47 45 42
B8 | 53 51 90 77 77 77 77 7 7 77 79 79 74 68
B8a | 56 54 90 81 81 81 81 82 82 81 74 74 70 64
C4 53 50 77 81 76 75 76 76 76 76 67 67 65 57
Dly 61 59 77 81 76 97 100 98 99 98 69 69 66 61
Dlg | 60 57 77 81 75 97 97 95 96 95 69 69 65 61
D1b 61 58 77 81 76 100 97 97 98 98 69 69 66 61
D1d 61 58 77 82 76 98 95 97 97 97 69 69 65 61
Dle | 61 58 77 82 76 99 96 98 97 97 69 70 66 61
D1f 62 58 77 81 76 98 95 98 97 97 70 70 66 62
E2 49 46 79 74 67 69 69 69 69 69 70 99 91 72
E2a 50 47 79 74 67 69 69 69 69 70 70 9o 92 72
E2b | 46 45 74 70 65 66 65 66 65 66 66 91 92 72
01 44 42 68 64 57 61 61 61 61 61 62 72 72 72
Ave* | 57 55 74 75 69 79 78 79 79 79 79 71 71 68 61

*The average percent identity score for all analyzed SpTrf genes is 72



Table S5 | The raw data from the synonymous / nonsynonymous analysis program (SNAP) indicate that some genes are undergoing positive

selection while others are undergoing purifying section

Genes
compared! | Sd> Sn® s N® pS® pN’ ds® dN®  dS/AN® pS/pN  dN/dS™  pN/pS Av*
A2 A2a 6 10 300.6667 1112.333 0.0200 0.0090 0.0202 0.0090 2.2363 2.2197 0.445545 0.4500 0.44
B8a B8 3 5 223.3333 796.6667 0.0134 0.0063 0.0136 0.0063 2.1506 2.1403 0.463235 0.4701 0.46
C4 Cda 0 0 200.3333 708.6667 0.0000 0.0000 0.0000 0.0000 N/A N/A N/A N/A N/A
Dif Di1h 0 0 216.0000 744.0000 0.0000 0.0000 0.0000 0.0000 N/A N/A N/A N/A N/A
Dif/h Did 3 13 2155000 747.5000 0.0139 0.0174 0.0141 0.0176 0.7986 0.8005 1.248227 1.2518 1.10
Dif/h Dle | 3.5 16,5 215.3333 747.6667 0.0163 0.0221 0.0164 0.0224 0.7336 0.7365 1.365854 1.3558
Dif/h Dly 3 12 214.8333 748.1667 0.014 0.016 0.0141 0.0162 0.8694 0.8706 1.148936 1.1429
Dif/h  Dlg 4 15 214.8333 748.167 0.0186 0.2000 0.0189 0.0203 0.9278 0.9287 1.074074 1.0753
Dif/h  D1b 5 12 215.0000 748.0000 0.0233 0.0160 0.0236 0.0162 1.4568 1.4496 0.686441 0.6867
Did Dle | 55 185 240.1667 839.8333 0.0229 0.0220 0.0233 0.0224 1.0402 1.0396 0.961373 0.9607 0.85
Did Dly 5 13 239.6667 840.3333 0.0209 0.0155 0.0212 0.0156 1.3535 1.3486 0.735849 0.7416
Did Dlg 6 17  239.6667 840.3333 0.0250 0.0202 0.0255 0.0205 1.2416 1.2375 0.803922 0.8080
Did D1b 7 13  239.8333 840.1667 0.0292 0.0255 0.0298 0.0156 1.9041 18863 0.52349 0.8733
Dle Dly | 25 7.5 239.5000 840.5000 0.0104 0.0089 0.0105 0.0090 1.171 1.1698 0.857143 0.8558 0.92
Dle Dlg | 3.5 115 239.5000 840.5000 0.0146 0.0237 0.0148 0.0138 1.0688 1.0681 0.932432 1.6233
Dle Dib | 45 7.5 239.6667 840.3333 0.0188 0.0089 0.0190 0.0090 2.1178 2.1038 0.473684 0.4734
Dly Dlg 1 6 239.0000 841.0000 0.0042 0.0071 0.0042 0.0072 0.5853 0.5865 1.714286 1.6905 0.95
Dly D1b 2 2 239.1667 840.8333 0.0084 0.0024 0.0084 0.0024 3.5298 3.5157 0.285714 0.2857
Dlg D1b 1 4 239.1667 840.8333 0.0042 0.0048 0.0042 0.0048 0.8786 0.8789 1.142857 1.1429 1.13
E2 E2a 3 3 196.0000 680.0000 0.0153 0.0044 0.0155 0.0044 3.495 3.4694 0.283871 0.2879 0.54
E2 E2b 5 9 191.0000 655.0000 0.0262 0.0137 0.0266 0.0139 1.9214 1.9052 0.522556 0.5229
E2a E2b 4 11 191.0000 655.0000 0.0209 0.0168 0.0212 0.0170 1.2506 1.247 0.801887 0.8038

'Genes with shared element patterns were analyzed for synonymous vs. nonsynonymous single nucleotide polymorphisms using
SNAP v 2.1.1 (https://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html)

2Sd indicates the number of synonymous substitutions.

3Sn indicates the number of nonsynonymous substitutions.
%S is the potential synonymous substitutions observed as calculated by the average of the compared sequences.

°N is the number of potential nonsynonymous substitutions as calculated by the average of the compared sequences.



®0S is Sd/S and indicates the proportion of observed synonymous substitutions.

"N is Sn/N. pS/pN and pN/pS are the ratios of synonymous and nonsynonymous substitutions without corrections.

8dS and dN are both Jukes-Cantor corrections for the pS and pN

%The dS/dN is the ratio of synonymous to nonsynonymous substitutions.

1°4N/dS is the ratio of nonsynonymous vs. synonymous substitutions. The dN/dS ratio equal to one suggests neutral evolution. The
dN/dS ratio of greater than one suggests positive selection while the dN/dS ratio of less than one suggests purifying selection.

*Note that the D1b average, while not on the table, is 0.62.



Table S6 | Pairwise distance scores used to calculate

percent mismatch for regions of the genes highlight
variation in the 5'FR and 3'FR*

Genes | oen Exon1 Intron Exon2 3'FR
compared

A2 A2a|0088 0058 0048 0012 0.052
A2 B8 | 0218 0058 0202 0110 0.397
A2 BSa|0225 0058 0216 0106 0.378
A2 C4 | 0228 0058 0273 0091 0.461
A2 Dly|0.184 002 0220 0101 0411
A2 Dlg|0.182 002 0220 0.106 0.429
A2 Dib|0181 004 0220 0101 0.429
A2 Did|0205 0 0216 0102 0.408
A2 Dle|0174 002 0212 0102 0421
A2 DIf|0118 0019 0212 0097 0.407
A2 E2 |0214 0 0225 0100 0.395
A2 E2a|0225 0 0220 0.094 0.395
A2 E2b|0122 0 0212 0106 0.333
A2 01 |0122 002 0309 0105 0.360
A2a B8 | 0200 0038 0245 0110 0.412
A2a B8a|0206 0038 0252 0.105 0.453
A2a C4 | 0210 0038 0282 0090 0.523
A2a Dly|0.185 0084 0256 0.098 0.464
A2a Dl1g|0.183 0084 0260 0.102 0.480
A2a Dib|0.182 0107 0256 0.098 0.480
A2a D1d | 0254 0061 0251 0.101 0.443
A2a Dle|0.175 0084 0242 0.099 0.470
A2a DI1f | 0172 0079 0243 0.099 0.456
A2a E2 | 0244 0058 0199 0.104 0.450
A2a E2a|0252 0058 0194 0.101 0.450
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Di1f

Did

Dle

Dly

Dlg

D1b
E2
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E2b
01
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A2a

0.207
0.213
0.218
0.200
0.013
0.026
0.187
0.135
0.071
0.079
0.079
0.077
0.202
0.209
0.209
0.201
0.225
0.206
0.031
0.190
0.145
0.089
0.098
0.092
0.095
0.194
0.201
0.219
0.212
0.228
0.210

0.061
0.084
0.058
0.038

0.079
0.061
0.084
0.084
0.084
0.107
0.058
0.061
0.058
0.084
0.058
0.038

0.079
0.061
0.084
0.084
0.084
0.107
0.058
0.061
0.058
0.084
0.058
0.038

0.191
0.274
0.202
0.245
0.010
0.096
0.104
0.120
0.104
0.113
0.120
0.113
0.294
0.288
0.291
0.348
0.216
0.252
0.104
0.111
0.127
0.111
0.121
0.127
0.121
0.296
0.289
0.293
0.341
0.273
0.282

0.110
0.098
0.110
0.110
0.008
0.065
0.065
0.062
0.055
0.062
0.068
0.062
0.061
0.058
0.075
0.070
0.106
0.105
0.062
0.062
0.059
0.052
0.059
0.065
0.059
0.059
0.054
0.074
0.068
0.091
0.090

0.390
0.404
0.397
0.412
0.011
0.026
0.127
0.128
0.137
0.153
0.149
0.149
0.146
0.146
0.138
0.138
0.378
0.453
0.080
0.120
0.121
0.129
0.142
0.138
0.138
0.132
0.132
0.126
0.130
0.461
0.523
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01
A2
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E2b

01
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B8
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0.026
0.031
0.077
0.075
0.075
0.132
0.069
0.194
0.206
0.213
0.228
0.220
0.184
0.185
0.079
0.098
0.077
0.003
0.008
0.099
0.008
0.176
0.201
0.202
0.172
0.172
0.182
0.183
0.079
0.092
0.075

0.084
0.084
0.107
0.061
0.084
0.079
0.058
0.058
0.061
0.084
0.02
0.084
0.084
0.084
0.084

0.02
0.02

0.02
0.02
0.02
0.04
0.02
0.084
0.084
0.084
0.084

0.096
0.104
0.143
0.149
0.146
0.150
0.139
0.140
0.321
0.314
0.318
0.385
0.220
0.256
0.113
0.121
0.143
0.005
0.002
0.005
0.023
0.015
0.299
0.293
0.290
0.364
0.220
0.260
0.120
0.127
0.149

0.065
0.062
0.070
0.075
0.070
0.075
0.069
0.069
0.069
0.069
0.079
0.076
0.101
0.098
0.062
0.059
0.070
0.007
0.004
0.017
0.009
0.014
0.055
0.054
0.069
0.055
0.106
0.102
0.068
0.065
0.075

0.026
0.080
0.222
0.216
0.216
0.189
0.202
0.192
0.200
0.200
0.196
0.196
0.411
0.464
0.153
0.142
0.222
0.014
0.014
0.021
0.003
0.014
0.143
0.143
0.136
0.148
0.429
0.480
0.149
0.138
0.216



Dlg
Dlg
Dlg
Dlg
Dlg
Dlg
Dlg
Dlg
Dlg
Dib
D1b
Dib
D1b
Dib
D1b
Dib
D1b
Dib
D1b
D1b
D1b
Dib
D1b
D1d
D1d
D1d
D1d
D1d
D1d
D1d
Did

Dly
D1b
Did
Dle
Di1f
E2
E2a
E2b
01
A2
A2a
B8
B8a
C4
Dly
Dlg
Did
Dle
Di1f
E2
E2a
E2b
01
A2
A2a
B8
B8a
C4
Dly
Dlg
D1b

0.003
0.010
0.096
0.010
0.174
0.198
0.199
0.169
0.169
0.181
0.182
0.077
0.095
0.075
0.008
0.010
0.096
0.005
0.173
0.197
0.198
0.176
0.176
0.205
0.254
0.135
0.145
0.132
0.099
0.096
0.096

0.02
0.02

0.02
0.02
0.02
0.04
0.04
0.107
0.107
0.107
0.107
0.02
0.02
0.04
0.02
0.02
0.04
0.04
0.04
0.061

0.061
0.061
0.061
0.061
0.02
0.02
0.04

0.005
0.007
0.010
0.028
0.020
0.299
0.293
0.290
0.374
0.220
0.256
0.113
0.121
0.146
0.002
0.007
0.007
0.025
0.018
0.299
0.293
0.290
0.364
0.216
0.251
0.120
0.127
0.150
0.005
0.010
0.007

0.007
0.005
0.022
0.014
0.019
0.058
0.057
0.072
0.059
0.101
0.098
0.062
0.059
0.070
0.004
0.005
0.019
0.011
0.016
0.052
0.051
0.066
0.053
0.102
0.101
0.062
0.059
0.075
0.017
0.022
0.019

0.014
0.000
0.027
0.010
0.020
0.147
0.147
0.155
0.167
0.429
0.480
0.149
0.138
0.216
0.014
0.000
0.027
0.010
0.020
0.147
0.147
0.155
0.167
0.408
0.443
0.128
0.121
0.189
0.021
0.027
0.027



D1d
D1d
D1d
D1d
D1d
D1d
Dle
Dle
Dle
Dle
Dle
Dle
Dle
Dle
Dle
Dle
Dle
Dle
Dle
Dle
Di1f
Di1f
Di1f
Di1f
Di1f
Di1f
Di1f
Di1f
Di1f
D1f
Di1f

Dle
Di1f
E2
E2a
E2b
01
A2
A2a
B8
B8a
C4
Dly
Dlg
D1b
Did
Di1f
E2
E2a
E2b
01
A2
A2a
B8
B8a
C4
Dly
Dlg
D1b
Did
Dle
E2

0.090
0.156
0.221
0.221
0.183
0.172
0.174
0.175
0.071
0.089
0.069
0.008
0.010
0.005
0.090
0.166
0.190
0.191
0.169
0.169
0.118
0.172
0.187
0.190
0.194
0.176
0.174
0.173
0.156
0.166
0.193

0.02
0.02

0.02
0.02
0.084
0.084
0.084
0.084

0.02
0.02

0.02
0.02
0.02
0.04
0.019
0.079
0.079
0.079
0.079

0.02
0.02

0.019

0.028
0.020
0.294
0.287
0.284
0.347
0.212
0.242
0.104
0.111
0.139
0.023
0.028
0.025
0.028
0.012
0.297
0.291
0.287
0.400
0.212
0.243
0.104
0.111
0.140
0.015
0.020
0.018
0.020
0.012
0.286

0.023
0.015
0.057
0.055
0.072
0.052
0.102
0.099
0.055
0.052
0.069
0.009
0.014
0.011
0.023
0.020
0.051
0.050
0.072
0.057
0.097
0.099
0.065
0.062
0.069
0.014
0.019
0.016
0.015
0.020
0.051

0.016
0.006
0.126
0.126
0.139
0.150
0.421
0.470
0.137
0.129
0.202
0.003
0.010
0.010
0.016
0.010
0.133
0.133
0.140
0.152
0.407
0.456
0.127
0.120
0.192
0.014
0.020
0.020
0.006
0.010
0.125



Di1f
Di1f
Di1f
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E3
E2a
E2a
E2a
E2a
E2a
E2a
E2a
E2a
E2a
E2a
E2a
E2a
E2a

E2a
E2b
01
A2
A2a
B8
B8a
C4
Dly
Dlg
Dib
Did
Dle
Di1f
E2
E2a
E2b
01
A2
A2a
B8
B8a
C4
Dly
Dlg
D1b
Did
Dle
Di1f
E2
E2a

0.196
0.115
0.115
0.214
0.244
0.202
0.194
0.206
0.201
0.198
0.197
0.221
0.190
0.193

0.013
0.218
0.206
0.225
0.252
0.209
0.201
0.213
0.202
0.199
0.198
0.221
0.191
0.196
0.013

0.019
0.02
0.04

0.058
0.058
0.058
0.058
0.02
0.02
0.04

0.02
0.019

0.02

0.058
0.058
0.058
0.058
0.02
0.02
0.04

0.02
0.019

0.280
0.277
0.355
0.225
0.199
0.294
0.296
0.321
0.299
0.299
0.299
0.294
0.297
0.286

0.005
0.048
0.092
0.220
0.194
0.288
0.289
0.314
0.293
0.293
0.293
0.287
0.291
0.280
0.005

0.052
0.063
0.045
0.100
0.104
0.061
0.059
0.069
0.055
0.058
0.052
0.057
0.051
0.051

0.007
0.029
0.050
0.094
0.101
0.058
0.054
0.069
0.054
0.057
0.051
0.055
0.050
0.052
0.007

0.125
0.127
0.139
0.395
0.450
0.146
0.132
0.200
0.143
0.147
0.147
0.126
0.133
0.125

0.000
0.156
0.160
0.395
0.450
0.146
0.132
0.200
0.143
0.147
0.147
0.126
0.133
0.125
0.000



E2a E2b | 0.231 0 0.042 0.030 0.156
E2a 01 |0.210 0.02 0.089  0.055 0.160
E2b A2 |0.122 0 0.212 0.106 0.333
E2b A2a |0.207 0.061 0.191 0.110 0.390
E2b B8 [0.209 0.061 0291 0.075 0.138
E2b B8a |0.219 0.061 0.293 0.074 0.126
E2b C4 |0.228 0.061 0.318 0.079 0.196
E2b Dly | 0.172 0.02 0.290 0.069 0.136
E2b Dlg|0.169 0.02 0.290 0.072 0.155
E2b D1b |0.176 0.04 0.290 0.066 0.155
E2b D1id | 0.183 0 0.284 0.072 0.139
E2b Dle | 0.169 0.02 0.287 0.072 0.140
E2b D1f | 0.115 0.02 0.277  0.063 0.127
E2b E2 |0.218 0 0.048 0.029 0.156
E2b EZ2a | 0.231 0 0.042 0.030 0.156
E2b 01 |0.028 0.02 0.067  0.019 0.009
01 A2 |0.122 0.02 0.309 0.105 0.360
01 A2a|0.213 0.084 0.274 0.098 0.404
01 B8 |0.201 0.084 0.348 0.070 0.138
01 B8a|0.212 0.084 0.341 0.068 0.130
01 C4 |0.220 0.084 0.385 0.076 0.196
01 Dly | 0.172 0.04 0364 0.055 0.148
01 Dlg|0.169 0.04 0.374 0.059 0.167
01 Dib|0.176 0.061 0.364 0.053 0.167
01 Did|0.172 0.02 0.347  0.052 0.150
01 Dle|0.169 0.04 0400 0.057 0.152
01 Dif |0.115 0.04 0355 0.045 0.139
01 E2 |0.206 0.02 0.092 0.050 0.160
01 E2a|0.210 0.02 0.089  0.055 0.160
01 E2b|0.028 0.02 0.067  0.019 0.009
*Pairwise distances were generated using Molecular Evolutionary Genetics Analysis (MEGA7)




Table S7 | Percent mismatch scores show similarities for all five
regions among genes of the same element pattern*

Genes | oep Exonl Intron Exon2 3'FR
compared

A2 A2a| 9 9 5 2 4
A2 B8 | 30 9 18 16 57
A2 B8a| 31 9 19 15 54
A2 C4 | 30 3 22 14 53
A2 Cda| 30 3 22 14 52
A2 Dly| 25 3 18 14 53
A2 Dlg| 25 3 17 15 51
A2 Dib| 25 6 17 14 52
A2 Did| 29 0 17 14 52
A2 Dle| 24 3 17 14 51
A2 Dif | 18 9 17 14 48
A2 Dih| 18 9 17 14 47
A2 E2 | 24 0 16 16 58
A2 E2a| 25 0 15 15 55
A2 E2b| 18 0 15 15 48
A2 01 | 18 3 16 14 50
A2a B8 | 32 6 21 16 58
A2a BSa| 33 6 21 15 55
A2a C4 | 31 12 21 14 54
A2a Cda| 30 12 21 14 53
A2a Dly| 28 12 19 14 53
A2a Dlg| 28 12 20 15 52
A2a Dib| 28 16 19 14 53
A2a Di1d| 40 9 19 14 50
A2a Dle| 27 12 19 14 52
A2a Dif | 25 6 19 14 49
A2a Dih| 25 6 19 14 47
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E2b| E2 [ 23 0 4 2 21
E2b | E2a| 23 0 3 3 22
E2b 01 | 5 3 1 3 1
01 A2 | 18 3 16 14 50
01 A2 | 27 12 13 14 50
01 B8 | 27 12 22 7 18
01 BSa| 28 12 21 7 16
01 C4 | 28 6 25 9 17
01 Cda| 28 6 25 9 17
01 Dih| 14 12 19 4 17
01 Dly| 23 6 21 6 18
01 Dib| 25 9 21 6 19
01 DI1d| 26 3 20 5 18
01 Dle| 23 6 20 6 18
01 DIf | 14 12 19 4 17
01 Dig| 23 6 21 6 19
01 E2 | 19 3 3 5 22
01 E2a| 20 3 2 5 22
01 E2b| 5 3 1 3 1

*The percent mismatch results between all gene pairs for the five
regions were calculated based on the data in Table S5. These data
are shown in graphical format in Figure 5 in the main paper.
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