Transcriptome profile of the fathead minnow (Pimephales promelas)
Wentworth S. A., Thede K., Aravindabose V., Monroe I., Thompson A. W., Garvin J., Packer R.
1. Department of Biological Sciences, Columbian College of Arts and Sciences, The George Washington University, Washington, DC
2. Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio

Introduction
Modern RNASeq technology provides a practical and accurate method for exploring the transcriptome and expressed proteins of non-model organisms. One such organism, the fathead minnow (Pimephales promelas), is a widely used toxicology model, however the lack of knowledge about its genetics has hindered further study into the interactions between this organism and its environment. In this study, we present the fully assembled and annotated gill transcriptome of the rosy red strain of P promelas to establish it as a foundation for further genetic and physiological research.

Materials and Methods
RNA Extraction and Sequencing:
1. Fathead minnows were acclimated to 25°C before tissue extraction.
2. Gill samples were perfused to clear blood prior to RNA extraction.
3. Stranded cDNA libraries were constructed from each RNA sample and sequenced by an Illumina HiSeq 2500.

Transcriptome Assembly:
1. Quality control was performed with the fastq toolkit to trim bases that have been shown to be biased in Illumina sequencing.
2. Cleaned Reads were assembled de novo into transcripts using the Broad Institute’s Trinity software package, using the default parameters.

Transcriptome Annotation:
1. The assembled transcripts were annotated using the Broad Institute’s Trinotate workflow.
2. The transcripts were BLASTed against the Uniprot/SwissProt database.
3. Further annotation was done using software such as Transdecoder, SignalP, tmhmm, and RNAMMER, which annotate other gene and transcript features.
4. Additional annotation using a WEGO level 2 gene ontology classification and a Kyoto Encyclopedia of Genes and Genomes pathway classification determined the categories of gene function and protein pathways represented in the transcriptome.

Summary of Transcriptome Data
- **Total raw reads:** 470,813,940
- **Total cleaned reads:** 470,812,874
- **Length of reads(bp):** 101
- **Total length of reads:** 47.5 Gbp
- **Total length of assembly:** 152 Mbp
- **Number of Transcripts:** 153,118
- **Transcript N50:** 2,271
- **Mean length of transcript:** 996
- **Median length of transcript:** 435
- **Transcripts annotated:** 150,773
- **Unique genes represented:** 72,334

Results

BLAST Similarity Distribution

BLAST E-Value Distribution

Gene Ontology Classifications

Conclusion and Discussion
Overall, the statistics of the assembled transcriptome denote that it is a high quality assembly. The coverage of the reads back to the transcriptome is ~270x, a coverage substantially higher than what is generally accepted (~30x)\(^1\). Furthermore, the N50 statistic—the contig length at which all longer contigs will comprise at least 50% of the total assembled bases of the transcriptome—at 2,271 bp is also higher than is normally found with other transcriptome profiles (more around ~1,500 bp).

It may be noted that the BLAST similarity distribution shows a majority of sequences having less than 50% identity with known gene sequences, however this is not surprising and can be explained. First, the transcriptome was only BLASTed against the UniProt/SwissProt database which, while very extensive and complete, is manually reviewed and annotated unlike the UniProt or nr database. This database is less likely to include sequences which are not extensively reviewed and may not provide hits for more recently sequenced and closely related organisms. Additionally, because P promelas was BLASTed against a database containing a majority of mammalian genes, and the closest relative of the fathead minnow which has been extensively annotated is Danio rerio and, even though it is in the same family of cyprinidae, many regions may simply be evolutionarily homologous, yet not sufficiently identical to provide high similarity scores. Finally, while these similarity scores are not of the best quality, the E-values, even those removed from the above graph, show remarkable significance and quality.

Future Work
In continuation of our findings we would like to explore changes in the transcriptome for fathead minnows acclimatized to the extremes of seasonal water conditions (~5°C and ~25°C) to determine what changes in the expression of various genes with relation to changing environmental conditions. Additional explorations into a variety of environmental factors such as salinity or acidity could add to the larger picture, and could even lead to explanations of how the fathead minnow maintains homeostasis as environmental conditions change.

Acknowledgements

References available upon request