Muscle Architecture and Myosin Profile of the Cypriniform Palatal Organ
Alexis Chen and Luz Patricia Hernandez
The George Washington University, Department of Biological Sciences

Introduction

Cypriniformes is a diverse group of fishes that includes over 3,000 species classified into more than 300 genera (Bart and Doosey, 2011). This species group of fishes is characterized by a number of unique anatomical features used for feeding. These features distinguish these fish by providing them with a distinctive way of feeding. Unfortunately, there is little understanding about both the function and design of these feeding structures.

What we know:
The feeding apparatus of cypriniform fishes is characterized by an absence of oral teeth and a stomach, as well as the presence of unique pharyngeal jaws, which rasp against the base of the skull. In addition, the pharyngeal roof is occupied with a muscular pad known as the palatal organ, while the pharyngeal floor contains an additional muscular pad known as the post lingual organ. It is also known that the palatal organ is present in most cypriniform species. All fishes that have been investigated contain a hard palate on the roof of the mouth, consisting of skin and bone, with the exception of cyprinodonts, which have a pharyngeal roof composed of muscle.

Prior to this study it was unclear whether the palatal organ existed in more than just these two species and whether the muscular composition of this structure was conserved. However, data from our lab have shown not only that the palatal organ is present in most cypriniforms, but also that there is significant morphological and histological diversity in the structure of this feature within the oral cavity of different cypriniform species.

Hypotheses:
1) There will be significant differences in both fiber diameter and myosin profile among different cypriniform species.
2) These differences in palatal organ architecture and myosin profile are due to phylogenetic similarity.

This research project examined the type of muscle fibers present in the two suborders within cypriniformes: the Cobitoidea and Cyprinoidea. Both muscle fiber diameter and myosin composition was examined. These data provide a more complete picture of the palatal organ’s potential functions. With this information, we have more clues as to the physiology of the palatal organ.

Data

<table>
<thead>
<tr>
<th>Species</th>
<th>Fiber Diameter</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carassius auratus</td>
<td>7.164</td>
<td>0.291</td>
</tr>
<tr>
<td>Cyprinus carpio</td>
<td>8.655</td>
<td>0.516</td>
</tr>
<tr>
<td>Devario aequipinnatus</td>
<td>19.225</td>
<td>0.646</td>
</tr>
<tr>
<td>Danio rerio</td>
<td>12.826</td>
<td>0.546</td>
</tr>
<tr>
<td>Misgurnus anguillicaudatus</td>
<td>7.164</td>
<td>0.291</td>
</tr>
</tbody>
</table>

The Relative Proportion of Slow and Fast Myosins in the Palatal Organ of Cypriniform Fishes.

Results

Conclusions

Our results show that there are significant differences in both muscle fiber diameter and myosin profile among different cypriniform species. It can also be concluded that differences in palatal organ design and structure most likely are not due to phylogeny alone.

The diversity in muscle diameter and myosin profiles in different cypriniform species suggests different palatal organ functions. Moreover the much greater proportion of all myosin types within some of the cobitoids, is most likely due to a higher density of muscle fibers than that seen within the cyprinoids.

Future Research

- Investigating exactly how the palatal organ is used in the feeding mechanism of each species of fish
- Expand the number of cypriniform species investigated
- Describe other possible factors contributing to the different uses of the palatal organ

Acknowledgements

I want to thank the Harlan Trust Summer Undergraduate Research Program as well as the Luther Rice Foundation for all of its support. Special thanks go out to Dr. Patricia Hernandez for her mentoring and laboratory resources. Also a thanks to Katie Staab, Cristina Rade, and all others who helped make this project possible.